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ABSTRACT
Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with
node-link network visualizations. This paper presents an integration of multi-focus and multi-level that enables an inter-
active approach to multi-step comparisons across different parts of such data sets. We describe NetEx, a visualization tool
providing multi-focus and multi-level techniques that enable users to simultaneously explore different parts of a network
and its underlying thematic data, such as time series. NetEx, implemented as a Cytoscape plug-in, has been applied to the
analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we focus on data
from an electrical power network, and demonstrate how NetEx supports the analytical task of fault diagnosis. Specifically,
results from a user study with 25 subjects suggest NetEx enables more accurate isolation of complex faults compared to an
especially designed software tool.

Keywords: Network visualization, interactive debugging, fault diagnosis, electrical power network, user study, NetEx,
Cytoscape

1. INTRODUCTION
Networks and graph representations are used to model complex systems ranging from engineering artifacts to social rela-
tionships. To model and analyze such networks mathematically and computationally, formalisms including graphs (both
directed and undirected) and probabilistic graphical models (including Bayesian networks1) have been introduced and
studied extensively in mathematics, statistics, computer science and artificial intelligence.

The nature of these networks and graphical structures, which are often larger or more complex than a person can
easily keep in their mind, makes interactive visualization software a fundamental tool supporting learning and analysis.
Consequently, there is a rich literature discussing interactive software tools for network visualization.2–7 Several techniques
and different representations have been developed to improve understandability,8–13 and enabled an analyst to explore the
graph and access low level information.14–21 Many researchers have investigated approaches for efficient representation
of multi-dimensional data.22–27 Multi-focus interaction28–30 and the use of multiple coordinated views31–35 to facilitate
comparison have been studied as well.

To show a graph structure on a computer display, a spatial layout of the node-link diagram must be selected. Depending
on several graph characteristics (e.g. size, connectivity) and layout criteria, various algorithms can be applied to accomplish
this task automatically.36 Alternatively, the layout can be created manually. For analysis or debugging, analysts often need
to compare and contrast the details (such as time-series) of several nodes that may be rendered close or far away in the
network layout. In general, locating the right subset of nodes in the network to closely analyze and compare might be
non-trivial. We have found this to be true when analyzing even moderatly-sized networks (say, with a 100 nodes or more).
We denote this the multi-focus challenge of visualization. One aspect of the challenge is that for even moderately sized
graphs, the complete graph and all its node labels may not be simultaneously visible on the computer screen. Since node
labels (or similar annotations to nodes) are no longer visible, an analyst needs to pan and zoom in to understand what a
particular node or set of nodes represent. After panning and zooming in, on the other hand, the overall context and other
important nodes located far away in the graph layout may be difficult to remember. Another aspect of this challenge is that
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real-world graph data, may result in spatial layouts that are quite dense and cluttered. This is the case for the Enron e-mail
data set,37 for example.

Another research problem, which we denote the multi-level challenge, is the problem of effective and simultaneous
visualization of thematic data together with the graph structure. Visualizing a large amount of thematic data embedded
within the node-link diagram is generally not feasible. Locating the right portion of the data to analyze in depth in order to
solve a problem might be like like finding a needle in a haystack. For example, diagnosis of an electrical power network
requires checking and comparing time series data from a large number of sensors to look for abnormal behaviors that
could flag possible faults. Moreover, only focusing on local information, such as thematic data related to individual nodes,
is typically not enough in that the analyst looses context. Global information, i.e. the structure of the network, plays
an important role as well in many problem solving tasks. Considering once again the electrical network example, it is
important to understand how power flows from batteries to loads through a distribution network. A key requirement for
a network visualization tool is that it should be capable of showing clear connections and relationships between pieces of
thematic data and the corresponding graph nodes.

The goal of this research is to develop improved visual analytics techniques that meet the multi-focus and multi-
level challenges discussed above. Our emphasis is on interactive visualization and analysis of complex networks where
both node-link structure and thematic data are important. Based on the well-understood concept of overview+detail,38

our NetEx tool enriches the node-link representation of networks, providing direct access to other aspects of data that
are not encapsulated in the graph structure. Leveraging existing techniques such as visual style, zooming size capability
for problem area and details-on-demand with click-and-drag features,38–40 and expanding the work of Butkewicz et al.
on multi-focused analysis using probes,28 we develop a visualization tool that enriches the positional relative node-edge
representation of networks providing easy access to other aspects of data that can not be directly encapsulated in the graph
structure. Combining multiple techniques might help orient a deeper analysis of a network. These techniques allow us to
simultaneously analyze different aspects and parts of a data set while preserving the structure of the network. Starting from
a network overview, the NetEx tool can be successfully used to simplify complex analysis and fluidly support exploration
and comparison of multiple levels of the network and related data.

We hypothesize that the techniques integrated in NetEx, while individually relatively simple, are versatile and can
by applied to networks of various sizes and types. We have applied NetEx to Bayesian networks 41, 42 in addition to the
electrical power network and social networks case studies discussed in this paper. The generality of the simple approach
makes it useful in problem solving situations of “needle(s) in a network,” for example when an analyst is looking for one
or a few “bugs,” something that is an anomaly or not intended. In a biological network, an analyst might be hunting for
genes that cause disease or extraordinary behavior. In a social network, like the one we created from the Enron emails, one
might be trying to identify incriminating evidence of misconduct.

Electrical networks, the focus of this paper’s user study, have been interestingly visualized previously.7, 11 Electrical
power plays an essential and increasing role in vehicles, including cars, aircraft, and spacecraft. In aerospace, for example,
electrical power loads include avionics, propulsion, life support, and thermal management. Unfortunately, electrical power
is not without problems. On September 2, 1998, Swissair 111 crashed into the Atlantic Ocean, killing all 229 people on
board. It was determined that wires short-circuited and led to an electrical fire. A battery failure occurred on the Mars
Global Surveyor on November 2, 2006, ultimately leading to a premature end to its mission. Most likely, a software error
caused the battery to overheat due to over-exposure to sunlight. These and similar incidents and accidents emphasize the
importance of detecting, isolating, and mitigating faults in electrical power networks. The difficulty of these tasks increases
with the size and complexity of the network, the number and complexity of sensors, the sampling rate of sensors, and the
number of and degree of interaction and ambiguity between faults.

We first present background and related work in Section 2. Section 3 presents the capabilities of the NetEx software.
Starting from a network overview, NetEx analysts can successfully solve complex problems, supported by capabilities for
exploration of the network and related data, enabling analysts to compare data values of multiple nodes from various foci
in the network. In Section 3 we discuss NetEx in the context of visualization for example networks, with emphasis on a
vehicular electrical power network.43 Here, the analytical task, which can be be considered a knowledge crystallization
task,44 involves examining and comparing time series for a set of sensors (voltage, current, temperature, etc.) in order to
diagnose which components of the network broke and at what time it happened. This requires three main steps, namely
(i) search for irregularities in sensor time series, (ii) detection of fault candidate nodes in the network, and (iii) isolation of
faulty nodes. Section 5 reports on a user study with 25 subjects in which two tools, NetEx and Intelliviz, were compared.



Our results suggest that NetEx improves the accuracy of complex problem solving task compared to Intelliviz, ∗ a custom
software tool that has been productively used to visualize several NASA data sets, including data from ADAPT. In Section 6
we conclude and outline future work.

2. BACKGROUND
Appropriate visualization techniques might speed and simplify the analysis and exploration of complex datasets, such
as electrical power networks. Some dimensions of heterogeneous data may be naturally represented in the form of a
(weighted) graph and visualized as node-link diagrams. A graph G = (V,E) consists of a set of nodes V and a collection of
pairs of nodes called edges E = {(X ,Y ) |X ,Y ∈ V}. A weighted graph (G,W ) is obtained by adding a weighting function
W : E→ R+. Heterogeneous datasets also include other dimensions of data, which in this paper will be referred to as
thematic data D, that are not directly exposed in the graph structure. The nature of thematic data D varies; examples
include time series of physical measurements, as it is for ADAPT, or the textual contents of e-mails or tweets in social
networks. The entire network dataset can be described as a tuple N = (G,W,D).

2.1 Graph Navigation and Exploration
Several approaches have been developed to visually explore large graphs. Zooming and panning of the graph representation
allow users to switch between overview and detailed representations.38 More sophisticated interactive graph visualizations
provide an integrated representation of details and overview. Research in this area includes the work on subgraph discovery
by Faloutsos et al.,14 the interaction techniques for subgraph selection and manipulation by McGuffin and Jurisica,16 the
work on sigma lenses by Pietriga et al.,17 and research on fisheye view by Schaffer et al.18 and Gansner et al.15 Relevant
work on visual exploration of large graphs also includes the combination of semantic and geometric distortions in the
visualization system by van Ham and van Wijk,19 the cross-zooming approach by Wong et al.,21 and the novel “search,
show context, expand on demand” model by van Ham and Perer.20 Multiple coordinated views, supporting investigation
with distinct views showing different aspects of the same conceptual entity, have been used as well.31, 32, 35, 45

NetEx integrates some of the above techniques—especially zooming, panning, and multiple coordinated views—with
interactive exploration across multiple node foci.

2.2 Multi-level and Multi-dimensional Data
While much information can be encoded in a node-link structure, visualizations have difficulty simultaneously showing
underlying thematic data related to nodes in their network relationships. Significant underlying data that exist in a different
representation, such as time series, categorization of messages or the main topics discussed in e-mails, is very hard to
visualize in a node-link representation. Techniques for multidimensional data analysis and comparison have been investi-
gated, among others, by Lee et al.,23 Weaver27 and Lex et al.24 Also, several multivariate network visualization systems
have been developed, such as Wattenberg’s PivotGraph,26 GraphDice by Bezerianos et al.,22 and FlowVizMenu by Viau et
al.25 The Action Science Explorer46, 47 integrates visualization, statistics, and text analytics; this tool provides a powerful
node-arc visualization of scientific citation networks.

Building on work that displays thematic data such as texts, statistics, or time-series, NetEx simultaneously displays
such thematic data for interesting nodes in various parts of a network.

2.3 Multi-focus and Multi-point Interaction
Selection of multiple nodes, separated by many links, for detailed comparison might help analysis of graph structures
related to large and complex datasets. In this direction, Shoemaker and Gutwin30 investigated techniques to support multi-
point interaction. Also, multi-focus analysis has been studied by Butkiewicz et al.,28 who describe probe interfaces for
geospatial visualization, and Elmqvist et al.,29 who exploit space folding to guarantee visibility of multiple focus regions.
Research has also shown the benefit of linking, as opposed to highlighting, in visual data analysis tasks.48

It is the linking of such thematic data across different parts of a network that we think becomes especially interesting
for interactive network exploration as provided by NetEx.
∗http://www.stottlerhenke.com/projects/intelliviz/



Figure 1. Network visualization with NetEx. Anchoring the thematic data to the network view with dashed bubbles (A) allows low-level
focused analysis and comparison. Data boxes (B) can be stacked in a panel alongside of the detailed view (E). A scrollbar allows the
panel to host many boxes containing plots. A trace-line is displayed across all plots to facilitate comparisons. Data from different nodes
(in this case TE500, TE501, and TE502) can also be merged into a single box just by dragging a box and dropping it over another one
(C). The overview window (D) prevents the analyst from losing the complete picture of the network.

2.4 Graph Readability and Filtering
Several techniques have been investigated to address the problems of density and clutter sometimes associated with node-
link visualizations, e.g. the hyperbolic browser by Lamping et al.,10 the flow map layout by Phan et al.,12 EdgeLens by
Wong et al.,13 and Holten’s hierarchical edge bundling.9 Dynamic filtering to hide the least interesting edges, as well as
using opacity to emphasize important edges while keeping all edges visible are other typical solutions to clutter.36 Overbye
and Weber11 have investigated different methods for visualization of electric power systems, including animation, dynamic
device sizing, contouring, data aggregation and 3D views. Also, a very compact representation of graphs can be obtained
by replacing traditional node-link diagrams with adjacency matrices or hybrid representations, e.g. NodeTrix by Henry et
al.8 However, in an adjacency matrix one may loose some structure that can be easily seen in node-link diagrams.

NetEx could be extended with the above readability, filtering, and clutter-reduction techniques; adding to them the idea
of interactively evaluating thematic data for interesting nodes in various parts of a network.

2.5 Summary
While other techniques and tools discussed above are good at focusing and browsing, our goal is to support visualization
for the purpose of interactive problem solving in networks with thematic data. We now turn to a more detailed presentation
of the visualization techniques that we are investigating in this paper.

3. NETWORK VISUALIZATION AND ANALYSIS WITH NETEX
We describe a multi-focus multi-level visualization approach, implemented in a software tool NetEx that supports inte-
grated network analysis and interactive visualization. NetEx gives the analyst a familiar graph view with modified layout
to focus on multiple parts simultaneously using a distinct bubble attachment to other visually associated views. We inte-
grate existing techniques28, 31, 38 to improve multi-concept combination comparisons. The visualization technique considers
overview+detail as well as focus+context, in a seamless fashion. The visual representations can be zoomed and panned at
all times for overview+detail and provide enhanced interactive focus+context techniques on demand.



NetEx41, 42 is an interactive visualization tool for integrated network analysis, implemented in the form of a Cytoscape49

plug-in. It gives the analyst a familiar graph view with modified layout to focus on multiple parts of a network simulta-
neously, distinguishing data at different representation levels with a stylized “thinking bubble” connection, taken from the
thought bubbles found in cartoon strips. Each bubble link connects a node in the graph and a pop-up data box showing
its thematic data, a time-series plot in the case of electrical power networks.† This facilitates the comparison of thematic
data, such as time-series, for multiple nodes while at the same time connecting the thematic time-series to their respective
locations in the graph structure. The bubble links support both multi-level and multi-focus analysis, which we now discuss.

3.1 Multi-level Analysis
Figure 1 shows a screen-shot of NetEx. The network overview is always visible (Figure 1(D)). The detail view allows
comparison of semantics not brought out in the overview. Zooming and panning allow the analyst to restrict attention to
a particular area of the graph, which is visualized in the center of the display (Figure 1(E)). NetEx enables the analyst to
explore data at the desired level of detail (i.e., multi-level analysis) without losing the complete picture of the network.
Thus, the tool is preserving the capability of being orienting even when a very small area is selected for focus in the detail
view (overview+detail38).

NetEx promotes interactive visual exploration, allowing users to select a particular element of the graph, such as a
single node or a set of nodes, and to access underlying information about that element not directly exposed in the network
structure (thematic data). In the ADAPT network example, thematic data consists of line chart views of time series data
corresponding to sensor readings. The thematic data is attached to the network view with a line of bubbles which anchors
the data box to the node it is related to (Figure 1(A)). The use of bubbles instead of solid lines distinguishes between graph
edges (solid lines) and anchors (bubble lines).

3.2 Multi-focus Analysis
By supporting the simultaneous opening and comparison of thematic data, such as sensor reading time series, for nodes
from different parts of a network, NetEx enables what we call multi-focus analysis. This feature, which can be seen as an
extension of the probes proposed by Butkiewicz et al.28 to graphs, should be useful to any system that has more than one
level of representation. Many analysis tasks—including fault diagnosis—require users to inspect and compare multiple
nodes at the same time in order to make sense of what is happening in the system under study.

NetEx simplifies comparison of different nodes, along with their thematic data, in several ways. First, the analyst can
“merge” thematic data from different nodes into a single box by dragging a box and dropping it over another one (Drag
& Merge), as illustrated in Figure 2. This is particularly useful when the number of compared nodes is large. A different
color is associated with each of the nodes to be compared. Both the line in the plots and the bubbles are painted with this
color to allow for immediate association of nodes with corresponding data. Original colors are preserved in the merged
box to help the analyst maintaining association between nodes and data, even when the latter is moved into a different box.
Moreover, plots are lined up vertically in the side panel and a trace-line is displayed across all of them to help identifying
events occurring at the same time for different nodes (Figure 1(B)). NetEx also allows the analyst to change the axis scale
of data boxes so that a common scale is adopted.

4. VISUALIZATION AND ANALYSIS OF NETWORKS: CASE STUDIES
One of the major drivers of the progress of humanity is the enhancing of our abilities through external aids.50 There is an
increasing gap between, on the one hand, the rich world emerging through the steadily increasing capabilities of sensors,
networks, and computers, and the capability of humans to absorb, analyze, and act accordingly on the other hand.

Software tools for visualization and analysis of networks, such as NetEx, make up one avenue of attack to bridge this
gap. We have applied NetEx in several case studies. In a first case study, discussed in Section 4.1, we use our visualization
tool to diagnose faults in an electrical power network. Here, we use data from ADAPT,43 a real-world electrical power
network. We compare NetEx with a baseline tool; this comparison is the basis for the formal user study in Section 5. In
a second case study, NetEx is applied to a social network built from the Enron e-mail data set.37 Section 4.2 shows how
NetEx helps detect two key players in the company, namely Jeff Dasovich and Bill Williams, that were not previously

†NetEx provides, for the data boxes, both a completely separate visualization as well as floating diagrams. We experimented and
found pros and cons of both approaches, and therefore ended up providing both options in NetEx.



(a) (b) (c) (d)

Figure 2. Alternative NetEx displays of a node-link graph in combination with detailed data shown in data boxes, illustrated using the
ADAPT electrical power network dataset: (a) no data box is shown; (b) the box of TE505 is shown; (c) the box of TE506 is also shown;
(d) the two boxes are merged. Original colors are preserved in the common box to help the analyst maintaining association between
nodes and data, even when the latter is moved into a different box.

known to the analysts using NetEx. A third case study shows how the techniques described in this paper allow better
interactive analysis of Bayesian networks,1 especially comparison of conditional probability tables within them.41, 42

4.1 Diagnosing Faults in Electrical Networks
This section describes the use of NetEx to diagnose faults in a real-world electrical power network, known as ADAPT,43

which has capabilities for power storage, distribution, and consumption. ADAPT contains batteries, electromechanical
relays, circuit breakers, and different kinds of loads, such as pumps, fans, and light bulbs. Several sensors are available,
measuring voltage, current, relay position, temperature, light intensity, and liquid flow. We consider scenarios taken from
the ADAPT testbed, more specifically Tier 2 of DX 2009 competition dataset.‡ These scenarios consist of nominal runs,
where faults were not injected into ADAPT, as well as faulty runs involving one or more faults in components or sensors.

4.1.1 Fault Diagnosis Examples

We are interested in diagnosing which component(s) broke and at what time it (they) broke. By examining and comparing
time series for a selected set of sensors (voltage, current, temperature, etc.), it is possible to diagnose a faulty scenario.
For example, consider a case in which light bulb LGT400 breaks, stopping emitting light and heat and drawing no current.
Current sensor readings upstream of the broken component will show an abrupt drop, and the light (LT500) and temperature
(TE500) sensors attached to the bulb will stand clearly out and show abnormal behavior (Figures 1 and 3). Specifically, a
sudden drop of light intensity can be seen for LT500, while a sharp inversion of trend (from slowly increasing to decreasing)
is observed for TE500. In contrast, other sensors on the same path, such as TE501 and TE502, show the expected slowly
increasing behavior. This suggests that power is correctly supplied to most loads, and the problem must be related to one
load, LGT400.

The fault isolation task in an interactive visualization involves several steps such as scrolling and zooming, as well as
multi-step comparisons. Our hypothesis is that NetEx, by supporting users in comparing readings from multiple sensors
and quickly identifying interesting parts of the network, provides strong support for fault diagnosis processes.

4.1.2 Baseline Visualization Tool: Intelliviz

For the purpose of comparison, we used Intelliviz,§ an existing visualization tailor-made for the ADAPT electrical power
network. The tool provides two windows: a network window (Figure 3(B)), and a sensor window showing sensor readings
(Figure 3(A)). There is no link between the windows, so that a plot can only be associated with the corresponding network
node based on the common name. Plots of sensor readings are organized alphabetically. Plots corresponding to nodes
which are very close in the network and interacting with each other may be very far apart in the sensor window and hard
to compare. Since the ADAPT network contains about 170 nodes, half of which are sensors, the sensor window must be
scrolled down several times in order to see all the plots. Finally, no overview of the network nor zooming are provided.

In order to perform the fault isolation task with this tool, the following steps are necessary:

1. Search for irregularities in sensor time series. Since the number and position of components and sensors involved
in faults are unknown, all plots must be analyzed, but due to limited screen space it is not possible to look at all plots at the

‡http://www.dx-competition.org/
§http://www.stottlerhenke.com/projects/intelliviz/dxcompetition/index.htm



Figure 3. Intelliviz, a visualization tool for the ADAPT electrical power network. Two windows are provided: sensor readings window,
with time series plots, shown to the left in the foreground (A) and network window shown to the right in the background (B).

Diagnosis Step Intelliviz NetEx
1) Search for irregularities • Cannot mark interesting plots • Interesting plots can be kept
in sensor time series • All plots automatically shown • Plot creation takes time and effort

2) Detect fault candidate nodes

• Plots potentially hard to • Plots easy to compare thanks
compare due to ordering to box stacking, Drag & Merge,
according to type and name and common scale
• No visual link between plots • Bubbles allow for immediate
and nodes matching of plots and nodes

3) Isolate faulty nodes

• Requires switching between • No need to switch between
sensor and network windows different windows
• Harder due to lack of preparation • Easier thanks to preparations
in search and detect steps made in search and detect steps

Table 1. Comparison between Intelliviz and NetEx with regards to each step of a diagnosis task. NetEx allows for plots of interest to be
selected and shown together in the same view, anchoring data to respective nodes through bubbles. During the first step, NetEx sets an
analyst up for the second and third steps, which can consequently be performed faster than using the baseline tool, Intelliviz.

same time. Also, there is no way to mark interesting plots, such as LT500 and TE500 in Figure 3(A). The analyst is thus
required to remember (or manually write on the side) the names of the fault candidate nodes.

2. Detect fault candidate nodes in the network. Since there is no link between the plots and the network view, fault
detection requires the analyst to match sensor plots (Figure 3(A)) with network nodes (Figure 3(B)) based on component
names only. Due to lack of explicit links (such as the bubble anchors of NetEx), this may imply visual inspection of
all nodes in the network. Many panning operations could be necessary, besides continuous switching between network
window and sensor window (or list of candidate node names, either written in a separate text editor or on a sheet of paper).

3. Isolate faulty nodes. The location of faulty components and sensors can be inferred by carefully analyzing the
detected irregularities (sudden current drop, slowly decreasing temperature, etc.), taking into account the relationships
between candidate nodes (current nodes on the same path as faulty light bulb LGT400, sensors LT500 and TE500 connected
to LGT400). This step also requires panning and switching between the network and sensor windows (Figure 3).

4.1.3 Novel Visualization Tool: NetEx

Assuming that the side panel is used to display thematic data, NetEx enables an analyst to perform the same steps as
Intelliviz, but in a different way:

1. Search for irregularities in sensor time series. The analyst needs to first select a group of nodes (Figure 1(D)) with
one cursor drag, and then display the corresponding sensor plots in the side panel (Figure 1(B)) with one key stroke. Plots
corresponding to candidate nodes can be kept in the side panel, making the following steps straightforward. For example,



Figure 4. Multi-focus and multi-level representation, in NetEx, for Enron social network: (A) overview level, (B) detail level, (C) data
level, and (D) datum level. Anchoring the data level to the network view with large dashed bubbles allows low-level focused analysis
and comparison while preserving the structure of the network.

let us consider Figure 1, where the analyst has selected and expanded a number of nodes. After visual inspection of node
data boxes, an analyst may realize that only LT500, TE500 and IT167 are abnormal. The analyst might thus remove from
the side panel the node boxes related to all other sensors, as they are no longer relevant to fault diagnosis.

2. Detect fault candidate nodes in the network. Bubble links enable immediate matching of candidate plots in data
boxes with the corresponding nodes (Figure 1(A)). No visual search of node labels in the network, nor switching between
different windows, is needed.

3. Isolate faulty nodes. Comparison of data is easier in this case because (i) only interesting plots are shown in the
side panel, and (ii) data from different nodes can be merged in the same box (Figure 2). There is no need to switch between
different windows thanks to the visual link between nodes and data (bubbles). Consider again Figure 1: after irrelevant
boxes are removed, bubble lines enable an analyst to quickly realize that all interesting sensors (LT500, TE500 and IT167)
are located on the same path.

4.1.4 Comparison of NetEx and Intelliviz

Both Intelliviz and NetEx support electrical power system analysis and problem solving. Specifically, we discussed above
how three problem solving steps of diagnosis—search, detect, and isolate—are supported by both these software tools.
The different capabilities of each tool, with respect to the three problem solving steps, are summarized in Table 1.

4.2 Social Network Visualization
NetEx has been applied to visualize and analyze the well-explored Enron data set.52 Consisting of 250,000 e-mail messages
exchanged between 150 employees over a period of about 3 years, this corpus has been widely used for demonstrating
knowledge discovery and visualization techniques. NetEx enabled the analysts to detect two key players in the company,
namely Jeff Dasovich and Bill Williams, that they had not previously identified using other visualization tools.

Focusing on Dasovich, NetEx shows interesting areas of the graph that are very clearly distinguishable at a glance, even
if the whole network is displayed (Figure 4(A)). By using the overview+detail capability of NetEx, the analyst’s attention
was captured by a very small node (i.e. marginal role in the organization) with (i) an impressive number of exchanged
messages (i.e. very dark edges), (ii) a significant number of edges, and (iii) connections with large nodes (i.e. prominent
roles). Zooming and panning gives a more detailed view of this node, corresponding to the employee Jeff Dasovich, and its
neighbors (Figure 4(B)). Now it is quite easy to realize that there is a significant interaction between Dasovich and two vice
presidents, namely James Steffes and Richard Shapiro. These relations, which NetEx enabled the analysts to discover quite
naturally, had not been noted previously in other visualizations of the data. As pointed out by Pathak and Srivastava,53 on
one hand the frequency of interaction between these people is relatively high with respect to the average of the network. On



the other hand, this also are concealed relations, meaning that only the involved individuals are privy to these relationships,
while the rest of the network is not aware of them. Concealed relations such these are of great interest to analysts since
they may hide malicious activities.

We can get more information about the topics discussed by Dasovich in his e-mails by activating the thematic data box,
another multi-level capability of NetEx, for his node. As Figure 4(C) shows, California Energy Crisis is the dominant topic
of Dasovich’s messages, especially in the summer of 2001, just before the Enron scandal broke. This information might
be very relevant for analysts interested in identifying the main actors involved. The concealed nature of these relationships
can be investigated in detail using the NetEx message viewer (Figure 4(D)).

5. USER STUDY: DIAGNOSING FAULTS IN ELECTRICAL NETWORKS
In order to test our hypotheses about the benefits of NetEx compared to Intelliviz, we conducted a user study in the area
of debugging electrical networks (see Section 4.1). In this section we report on the design and results of this user study,
including both objective and subjective results.

5.1 Subjects, Tutorials, and Tasks
We asked 25 subjects to use the two tools to diagnose faults in the ADAPT electrical power network. Subjects were
graduate students at the CMU Silicon Valley campus, with at least some knowledge about electrical circuits. Subjects
(23 males and 2 females) were in the age range 20–30 years and volunteered to participate in the study with no cash
compensation. Before an experiment, we guided the subject through a tutorial presenting the ADAPT electrical power
network and the visualization tools. We also guided subjects through one tutorial task per tool, similar to the discussion in
Section 4.1, to show how Intelliviz and NetEx can be used for fault diagnosis.

During training, each subject was shown how to use the tool going through two instructive tutorials which took them
approximately 30 minutes. Tutorial 1 is an example of a fault occurring to a load (FAN415). Tutorial 2 is an example of
a fault occurring to a connecting component (CB136).¶ Each of the tutorial tasks aligns better to one of the experimental
tasks, but since all users used both tools (as further discussed below), we believe there is no or little bias. Subjects were
instructed to look at the time series plots showing sensor readings to find out which component(s) or sensor(s) failed, and
at what time it happened. Subjects were not given any particular indication about preferring speed or accuracy. They were
asked to analyze data and look for faults, with a hard time limit of 20 minutes per scenario.

We considered two different scenarios (Task 1 and Task 2), each with two concurrent failures. Subjects were randomly
placed into two groups (13 people in Group 1 and 12 in Group 2). Each subject used both Intelliviz and NetEx. Subjects in
Group 1 first used Intelliviz for Task 1, and then NetEx for Task 2. Subjects in Group 2, instead, first used NetEx for Task
1, and then Intelliviz for Task 2.

Task 1 consisted of a scenario with two faulty loads (light bulbs LGT406 and LGT407). The faults can be detected, see
Figure 5(a), by noticing the drop of temperature reported by the sensors attached to the loads (TE506 and TE507), the drop
of light intensity reported by the sensor LT505, and the drop of current in the path from the battery to the loads (sensors
IT261, IT267, and IT340). This task was intended to be relatively easy, as there was very little ambiguity in the evidence
and a very similar example had been shown during the tutorial.

Task 2 consisted of a scenario with a faulty circuit breaker (CB180) and a faulty sensor (ESH160A). As illustrated in
Figure 5(b), the circuit breaker fault can be detected by noticing the change of state, from closed to open, reported by the
sensor attached to the circuit breaker (ISH180) and noticing the drop of current and power downstream of the circuit breaker
(IT181 and E181). The issue with the sensor could be identified by noticing that all the other components downstream of
the relay were working fine. In other words, the problem was the sensor itself, not the relay. This task was intended to be
harder than Task 1, due to the possible confusion from having two concurrent faults of different nature on the same path.

¶Tutorial 1 (Exp 792 pb t2), Tutorial 2 (Exp 758 pb t2), Task 1 (Exp 814 pb t2), and Task2 (Exp 766 pb t2ff) are
available on-line at http://www.stottlerhenke.com/projects/intelliviz/dxcompetition/datamontage/
competition/index_t2.htm.
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Figure 5. Key NetEx plots for experimental tasks. (a) Task 1: the drop of temperature reported by sensors TE506 and TE507, the drop of
light intensity reported by sensor LT505, and the drop of current reported by sensor IT267 indicate that light bulbs LGT406 and LGT407
are very likely to be faulty. (b) Task 2: the change of state reported by sensor ISH180 and the drop of power reported by sensor E181
indicate that circuit breaker CB180 is very likely to be faulty. The change of state reported by sensor ESH160A is not supported by a
drop of power in sensor E161, suggesting that the sensor itself might be faulty in this case.

5.2 Answers and Analysis
Answers from subjects were recorded both during the experiments with Intelliviz and NetEx as well as afterwards. During
the experiment, for each detected fault, subjects were asked to report the faulty component or sensor, along with the time
when the problem happened, and a short explanation of their answer. We also recorded the time when they detected a
fault; no feedback was provided to the subject as to whether the fault they had found was correct or not. The answers were
then analyzed as discussed below; our results are presented in Section 5.3. After the experiment, subjects were asked to
answer a post-task questionnaire, providing their experience around the tasks and tools. These answers were then analyzed
as discussed below, leading to the results presented in Section 5.4 and Section 5.5.

We used two objective metrics to analyze users’ performance on each task: the F1 score to measure accuracy and the
diagnosis time to measure speed. The F1 score is defined as:

F1 =
2×T P

2×T P+FP+FN
,

where T P is the number of correctly identified faults (true positives), FP is the number of false alarms (false positives),
and FN is the number of missed faults (false negatives). The F1 score measures the accuracy of a subject’s answer, taking
into account both correct diagnoses and mistakes. The best F1-value is 1, meaning no mistakes (FP+FN = 0), while the
worst F1-value is 0, meaning no correct diagnoses (T P = 0).

In five cases, the subject’s brief explanation for a diagnosis did not agree with the reported fault. We determined that
subjects accidentally confused the name of a component with the name of the attached sensor, and gave preference to the
explanation. Moreover, subjects who obtained a F1 = 0 score for a task were not considered in the following analysis for
that task.‖ This happened for one subject in Task 1 and six subjects in Task 2.

5.3 Objective Results
Figure 6(a) summarizes the results of subjects using Intelliviz and NetEx on Task 1 (simple task) and Task 2 (complex
task). The time subjects used to finish a task is summarized on the x-axis, while the accuracy is summarized on the y-axis.
Averages and standard deviations for both dimensions are shown. Indeed, the task difficulty was about right, as most of

‖Note that no subjects abandoned the study. However, some subjects obtained a F1 = 0 score, which we took to mean that they either
did not understand the task or ran out of time before finding a meaningful answer to the task.



Task Tool F1 Accuracy Diagnosis Time
Task 1 IntelliViz 0.92±0.16 8.08±4.31
Task 1 NetEx 1.00±0.00 9.18±5.72
Task 2 IntelliViz 0.73±0.22 9.44±3.17
Task 2 NetEx 0.87±0.17 12.90±3.41

Table 2. Mean and standard deviation of the F1 score and diagnosis time for each of the two groups on each of the two tasks. See
Figure 6(a) for an overview.
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Figure 6. Comparison of Intelliviz and NetEx. (a) Performance in terms of time (x-axis) and accuracy (y-axis). Subjects were faster but
less accurate in their diagnostic problem solving when they used Intelliviz compared to when they used NetEx. (b) Answers summarized
from post-questionnaire. When using NetEx, subjects appropriately thought that Task 2 was more difficult than Task 1; there is no such
difference for Intelliviz.

the subjects took much of the allocated time to finish Task 2. For both Task 1 and Task 2, the results suggest that NetEx is
more accurate while Intelliviz is faster. This is especially prominent for Task 2 (the complex task).

Table 2 reports the mean and the standard deviation of the F1 score for each of the two groups on each of the two tasks.
For both tasks, subjects who used NetEx were on average more accurate than subjects who used Intelliviz. To analyze this
statistically, a t-tests was used to test whether the mean for one group is greater than for the other group. For Task 1, NetEx
was more accurate than Intelliviz with p = 0.061;∗∗ there was no significant difference between the completion times. For
Task 2, Intelliviz was faster than NetEx with p = 0.018; however NetEx was more accurate than Intelliviz with p = 0.075.

One interpretation of the above result is that NetEx enables more accurate results thanks to its key multi-level and
multi-focus capabilities: the bubble anchors, the side panel, and the capability of showing and hiding plots on demand.
The combination of these features, in fact, allows for immediate matching of candidate plots with the corresponding nodes
in the network. This is particularly crucial for Task 2, where the interaction between the faulty component requires more
than one step of the analysis.

Table 2 reports the mean and the standard deviation of the diagnosis time, in minutes, for each of the two groups on
each of the two tasks. Subjects who used Intelliviz were on average significantly faster than subjects who used NetEx on
the more difficult Task 2 (p = 0.018); this is not the case for Task 1 (p = 0.298).

We have two hypotheses for why Intelliviz users were faster, on average, than NetEx users. First, some subjects using
Intelliviz quit very quickly (perhaps thinking, typically incorrectly, that they had solved the diagnosis problem and were
done) but in fact did not perform very accurately compared to subjects using NetEx. This hypothesis is supported by the
lower accuracy score for Intelliviz, see Table 2 and Figure 6(a). Second, Intelliviz shows all plots simultaneously in the
sensor window, and in addition this Intelliviz window can host a larger number of plots than the NetEx side panel in a
single view (about 20 as opposed to 5). This second point suggests that the search step will generally be faster in Intelliviz
than in NetEx. However, NetEx users are supported by the more interactive and scalable approach of being able to select a
∗∗We realize that the use and interpretation of p-values is somewhat controversial and emphasize that when 0.1 ≥ p > 0.05 this is

often considered “weakly significant” or a “trend.” In this paper, we include the specific p-value for p < 0.1, or show error bars, and
avoid the use of descriptive terms (like “strongly significant” and “weakly significant”).
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Figure 7. Opinions about different features of NetEx, summarized from post-questionnaires. Only the features Drag & Merge and
possibly Overview were seen as not useful–see panel (a); no features were seen as confusing–see panel (b).

group of nodes they want to inspect and to execute another action (key stroke) to see the plots. The selection is performed
by clicking and dragging the mouse over the desired nodes.

5.4 Subjective Results: Intelliviz versus NetEx
In one part of the post-questionnaire, we asked the same questions about the experimental system NetEx and the control
Intelliviz. Figure 6(b) summarizes the results, in terms of averages and standard deviations (error bars) of four post-
experiment questions asked about Intelliviz and NetEx. Note that exactly the same questions were asked about Intelliviz
and NetEx. While there is substantial overlap between the error bars and means in many cases, several interesting trends
emerge. For Task difficult?, only when NetEx was used is there a (correct) indication that Task 2 (the complex task) was
harder. Using a t-test, we found in Task 2 that the Task difficult? score for NetEx is higher than that for Intelliviz (with
p = 0.060). For Satisfied with outcome?, there appears to be a difference in outcome satisfaction in favor of NetEx only
for the complex task. Using a t-test, the score for NetEx is for Task 2 greater than that for Intelliviz (with p = 0.053). For
Tool helpful?, there appears to be a bigger gap between NetEx and Intelliviz for Task 2, in favor of NetEx. Using a t-test,
in Task 2 the score on the Tool helpful? question for NetEx is greater (better) than the score of Intelliviz, with p = 0.019.

5.5 Subjective Results: Opinions about NetEx
Figure 7(a) and Figure 7(b) show results, in terms of averages and standard deviations (error bars), for two post-experiment
questions asked about nine different features of NetEx. The nine features were: Bubbles, Colors, Drag & Merge, Overview,
Show & Hide, Sidebar, Tooltips, Traceline, and Zoom. Figure 7(a), showing results for the question What do you think of
these NetEx features?, is ordered according to average usefulness, with the most useful feature at the top. The only NetEx
feature with an average score worse than (i.e., less than) Neutral is Drag & Merge. We ran a statistical hypothesis test,
specifically a one-population t-test, with the null hypothesis that µ = µ0 = 3.0 (since Neutral = 3.0). All results are (in
terms of usefulness of NetEx features) significantly away from Neutral = 3.0, except for Drag & Merge and Overview.††

We hypothesize that the reasons for these NetEx features being less useful include the following. Subjects did not use
Drag & Merge very much; they may have been able to perform the tasks just by comparing plots (taking advantage of the
Trace-line). Perhaps this feature was not required to solve the experimental tasks, or perhaps learnability was a reason this
feature was not used much. Drag & Merge may not have been emphasized enough during the tutorial compared to other
features such as Bubbles. Also, it was not possible to split plots that had been merged together by means of Drag & Merge,
and this might have prevented subjects from using this feature as much as we had hoped for. As for Overview, we now
think that the experimental ADAPT graph was not large enough to really test the usefulness of this feature.

††Using a one-population t-test, the level of significance was better than α = 0.025 for Tooltips and α = 0.005 or better for the
remaining NetEx features (excluding Drag & Merge and Overview).



Figure 7(b) is structured essentially the same way as Figure 7(a), except we here focus on results for the question Do you
think the features in NetEx were confusing? Interestingly, all averages are better than (less than) Neutral and statistically
significantly away from Neutral = 3.0.‡‡ This suggests that no NetEx features were, in general, confusing to users.

5.6 Discussion
Our results suggest that NetEx users perceived the task to be harder compared to Intelliviz users (p = 0.060); they were
nevertheless (and correctly) more confident about their performance on the task (p = 0.053). Moreover, NetEx users were
more satisfied with the tool (p = 0.019).

For the relatively small ADAPT graph, our results suggest that Intelliviz is faster than NetEx on the search step, because
it automatically shows thematic data for all nodes. All the time series plots must be examined and, at least for a relatively
small network such as ADAPT, this can be done quicker when all the plots are available in the same window, as it is in
Intelliviz. Sadly, Intelliviz shows thematic data for all nodes and this approach does not scale. Also, for more complex
tasks looking at all thematic data might be daunting, even for quite small networks. Indeed, for specific comparisons and
for networks that are larger than ADAPT, NetEx may have an advantage as it allows for plots that need to be compared to
be selected and shown together in the same view. More importantly, during the search step NetEx sets an analyst up for
the detect and isolate steps (see summary in Table 1). Our results suggest that these steps can then be performed faster and
more accurately using NetEx compared to Intelliviz.

6. CONCLUSION AND FUTURE WORK
The multi-focus and multi-level analysis techniques discussed in this paper enable an analyst to identify and compare
multiple nodes of interest. While many visualizations focus on analysis, NetEx focuses on showing a visually recognizable
views of the node-link structured, coupled with multi-focus display of thematic data for important nodes. This paper
demonstrates how comparing multiple views in a visual interactive analysis tool can reduce errors in comparing data, for
the purpose of fault diagnosis, in different parts of a network. The multi-focus and multi-level techniques succeed by
supporting simultaneous analysis of multiple parts of a dataset while giving the analyst different views of and easy access
to the network’s graph structure. Using data from an electrical power network, we showed in a user study how NetEx
may improve the analytical task of diagnosis. Our results suggest that, compared to a baseline tool, NetEx enables more
accurate isolation of faulty nodes in complex situations involving multiple faults.

In future work, we would like to borrow from Intelliviz by showing, in NetEx, all the plots in a larger side panel
at the beginning of the analysis. The analyst could then remove all plots showing a nominal behavior as in the current
implementation, ending up with a relatively small number of candidate plots (typically less than 10 for tasks like the ones
in this study), and leaving space for the overview and detail window, as well as the bubble connections. NetEx could also
be strengthened by drawing parts of large networks together with multiple fisheye foci. We also expect to further evaluate
these visual interfaces and interaction techniques with additional graph exploration tasks.

The size and complexity of network-related data continue to expand. The power and value of this work is that it is part
of the quest for scalable interactive computing systems that keep an analyst aware of the whole while exploring the details.
We call for creating tools that aid people’s limited memory while simultaneously exploring and comparing multiple nodes
or areas of interest in networks. We encourage other researchers to work, as we are, on improving interactive techniques
for exploring large and complex problems.
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