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Abstract — The Uniform Memory Hierarchy (UM H) model introduced in this paper
captures performance-relevant aspects of the hierarchical nature of computer memory. It
1s used to quantify architectural requirements of several algorithms and to ratify the faster
speeds achieved by tuned implementations that use improved data-movement strategies.

A sequential computer’s memory is modelled as a sequence (Mg, M1, ...) of increas-
ingly large memory modules. Computation takes place in My. Thus, My might model a
computer’s central processor, while M; might be cache memory, M> main memory, and
so on. For each module M, a bus B, connects it with the next larger module M, ;1.
All buses may be active simultaneously. Data is transferred along a bus in fixed-sized
blocks. The size of these blocks, the time required to transfer a block, and the number of
blocks that fit in a module are larger for modules farther from the processor. The UM H
model is parameterized by the rate at which the blocksizes increase and by the ratio of
the blockcount to the blocksize. A third parameter, the transfer cost (inverse bandwidth)
function, determines the time to transfer blocks at the different levels of the hierarchy.

UM H analysis refines traditional methods of algorithm analysis by including the cost
of data movement throughout the memory hierarchy. The communication efficiency of a
program is a ratio measuring the portion of UM H running time during which My is active.
An algorithm that can be implemented by a program with positive asymptotic communi-
cation efficiency is said to be communication-efficient. The communication efficiency of a
program depends on the parameters of the U M H model, most importantly on the transfer
cost function. A threshold function separates those transfer cost functions for which an
algorithm is communication-efficient from those that are too costly. Threshold functions
for matrix transpose, standard matrix multiplication, and Fast Fourier Transform algo-
rithms are established by exhibiting communication-efficient programs at the threshold
and showing that more expensive transfer cost functions are too costly.

A parallel computer can be modelled as a tree of memory modules with computation
occurring at the leaves. Threshold functions are established for multiplication of N x N
matrices using up to N? processors in a tree with constant branching factor.



1 Overview

Theoretical computer science does not address certain performance issues
important for creating scientific software. Careful tuning can speed up a
program by an order of magnitude [GJMS88]. These improvements follow
from taking into account various aspects of the memory hierarchy of the
target machine. This paper presents a model of computation that captures
these performance-relevant characteristics of computers.

Big-O analysis on the traditional Random Access Machine (RAM ) model
of computation [AHU74] ignores the non-uniform cost of memory accesses.
Section 2 illustrates the gap between traditional theory and practice on a
naive matrix multiplication program. For the RAM model, where every
memory access takes one unit of time, the complexity! of this program is
O(N3). However on a real computer?, cache misses and address translation
difficulties slow moderately large computations down considerably (by a fac-
tor of 40). On problems that are too big for main memory, page misses
further reduce performance (first by another factor of 25 and, for still larger
N, by a further factor of 500). A graph of time versus problem size looks more
like O(N°®) than O(N?3). To achieve O(N?) performance, the programmer?
must understand the computer’s memory hierarchy.

A first step is the Memory Hierarchy (M H) model of Section 3. A sequen-
tial computer’s memory is modelled as a sequence of (usually increasingly
large) memory modules (Mg, My, ...), with buses connecting adjacent mod-
ules. All of the buses can be active at the same time. Data in module M,
is partitioned into blocks, and each block is further divided into subblocks.
A level-u block is the unit of transfer along the bus connecting module M,
and next larger module M,1. A level-u block is also a level-(u + 1) sub-
block. The M H model has three parameters per memory module that tell
how many data items are in each block, how many blocks the module can
hold, and how many cycles it takes to transfer a block over the bus. Compu-
tations — arithmetic operations, comparisons, indexing, and branching —

!That is, the worst-case running time on a RAM as a function of problem size N,
where N is the maximum of the matrix dimensions.

?In this case, an IBM RISC System/6000 model 530 computer, hereafter the RS/6000.

3Matrix multiplication is sufficiently simple that it may suffice to use a compiler with
such optimizations as strip mining and loop interchange [PW86].



take place in My. If a program is written against the M H model, and the
model’s parameters reflect a particular computer, then the program can be
translated to run efficiently on the computer. (Translating a M H program
may be easy or hard depending on details of the machine, operating system
and programming language.)

The many parameters of the Memory Hierarchy model can obscure al-
gorithm analysis. Furthermore, an algorithm designer would like be able
to write a single program that can be compiled to run well on a variety of
machines. These considerations call for a model that is more accurate than
the RAM model and yet is less complicated than the M H model. The Uni-
form Memory Hierarchy (UM H) model of Section 4 reduces the zoo of M H
parameters to two constants (the aspect ratio and the packing factor) and
a transfer cost function. This model characterizes memory hierarchies well
enough to confront an algorithm designer with many of the problems faced by
a performance tuner. Yet the model is simple enough to allow analysis. We
believe that it will be possible to construct compilers that translate UM H
programs to run efliciently on a broad class of computers.

UM H analysis of a program compares the performance on a RAM model
to the performance on a UM H model. In order to focus on the different
communication costs — and not the computational power — of the two
models, the RAM model used in this paper is a M H model with an infinitely
large module M;. The communication efficiency of a program is the ratio of
its RAM-complexity to its UM H-complexity; it is a function of the problem
size. A program is said to be communication-effictent if it has asymptotic
communication efficiency greater than 0. Whether or not an algorithm has
a communication-efficient program depends on the transfer cost function.
Section 4 defines threshold functions that separate transfer cost functions
that allow an algorithm to be implemented communication-efficiently from
those that do not.

Section 5 gives a transpose program with positive asymptotic communi-
cation efficiency? assuming constant transfer cost throughout the memory
hierarchy, and it is shown to have communication efficiency almost but not
quite 1 for “nicely aligned” matrices. (A matrix stored in level u is nicely
aligned if the first element of each column begins a level-u block.) Section 5

*Simultaneous data transfers on the multiple buses overcome the Q(N? loglog N) lower-
bound for the corresponding Block Transfer model [ACS87].



also shows than no program for transposing a square matrix can have an
asymptotic communication efficiency of 1.

Section 6 shows how to rechoreograph the naive matrix multiplication
program of Section 2 to be communication-efficient even if the transfer costs
rapidly increase as one goes up the hierarchy. At the threshold function,
matrix multiplication has communication efliciency of almost 1 for nicely
aligned matrices, but again communication efficiency of 1 is shown to be
unattainable.

Section 7 examines a Fast Fourier Transform (FFT) algorithm at its
slowly increasing threshold function. The straightforward program for this
algorithm has UM H complexity O(N log N loglog N), but the RAM com-
plexity is O(N log N), so its asymptotic communication efficiency is 0. Such
a program is said to be communication-bound. Careful rechoreography of the
algorithm results in a communication-efficient program.

Section 8 compares the UM H model to other models that incorporate
non-uniform costs of memory references.

Section 9 incorporates parallelism in the model. A parallel computer is
modelled as a uniformly branching tree of memory modules with processors at
the leaves. Threshold functions are established for parallel matrix multiplica-
tion of N x N matrices for various numbers of processors. For instance, with
N processors, a communication-efficient program requires constant transfer
costs.

2 Naive Matrix Multiplication

This section examines the performance of a simple 4-line matrix multipli-
cation program. Classical RAM analysis says that the running time of this
program should be O(N3). Experimental data on an RS/6000 suggests that
O(N®) might be a better approximation. This discrepency is explained by
taking into account the memory hierarchy of the computer.

Program 1 computes C := C + A B, where A, B, and C are matrices®. If
A, B, and C are square N x N matrices, the assignment statement is iterated

SLinear algebra packages, such as ESSL [IBM86] and LAPACK [ABetc92] use this
“update” form since it facilitates problem decomposition. Analysis of C := A B is
similiar.



NaiveMM(A[1:n,1:1], B[L:,1:m], C[1:n,1:m]):
REAL VALUE: A, B; vaLuE rEsurT: C
INTEGER VALUE: n, m, |
INTEGER: |, J, k
FOR | FROM 1 TO n

FOR | FROM 1 TO m
FOR k FrROM 1 TO |
Clig] := C[ij] + Ali,k]B[k,j]
END

Program 1: A Naive Program for Standard Matrix Multiplication.

N3 times. The RAM-complexity of Program 1 is:
N34+ O(N?).

This assumes that a multiply-and-add instruction, along with incrementing
address and index variables, loading the needed data into registers, and exe-
cuting a conditional branch, can all be performed as a single operation. The
O(N?) term reflects the loop-setup cost.

To see how closely the RAM analysis corresponds to practice, we ran
a FORTRAN version of Program 1 on square matrices that varied in size
from 35 x 35 to 2000 x 2000. The results of this experiment are reported in
Figure 1. The logarithm® of N is the horizontal axis of this graph; the vertical
axis is the log of the running time of the program (in cycles) divided by N3.
The RAM analysis leads one to expect that the data points would approach
the horizontal axis. This does not appear to be the case. A circle (o) plots
a data point; a small question mark (:) plots an estimated” value. The solid
line, a rough attempt to approximate the observed data with a straight line®,
represents a running time of 107*N®. The analysis of Section 4 will ratify

this O(NS) behavior.

6In this paper, an unadorned log is the logarithm base 10, and lg is base 2.

"The last data point (N = 2000) represents a running time of over five days. It was
not practical to gather more data.

8The slope of a line through points plotted on a log-log graph corresponds to the
exponent of a polynomial approximation of the data.
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Figure 1: Execution Rate of Naive Matrix Multiplication on an RS/6000.



An alternate interpretation is represented by the horizotal lines. The hor-
izontal axis represents one floating-point multiply-and-add instruction per
cycle®. The first dotted line represents the cost of loading two data items
per multiply-add. It fits the initial data points. A second dotted line, rep-
resenting the cost of translating a virtual address into a real one for each
multiply-add, fits the next group of points. A third represents the cost of
a page miss for every 512 multiply-adds. This line picks up the final data
point and the first group of estimated values. The final dotted line, repre-
senting the cost of a page miss for every multiply-add, is an estimate of the
performance of Program 1 for matrices bigger than about 12,000 x 12,000.
Verifying a single point on this line would require a 3.5 gigabyte disk and
1095 years. Before explaining why Program 1 exhibits this somewhat bizarre
behavior, let’s take a deeper look at matrix multiplication in general.

Calculation of the updating matrix product

C[1:n,1:m] := C[1:n,1:m] 4+ A[l:n,1:1] B[1:,1:m]

can be visualized as a nxm x| rectilinear solid as in Figure 2. Matrices A
and B form the left and top faces of the solid, and the initial value of C is
on its back face. The final value of C is formed on the solid’s front. Each
unit cube in the interior of the solid represents adding the product of its
projections on the A and B faces to a running sum. An element of the front
face is the final value of the running sum computed in the unit cubes behind
it. Evaluation of all of the unit cubes in any order will compute the result!®.
Program 1 first processes the upper left hand row of unit cubes (indexed by k
from back to front), then moves to the second and subsequent rows (indexed
by j from left to right) of the upper layer, and finally proceeds to the second
and subsequent layers (indexed by i from top to bottom).

The vertical axis of Figure 1 represents the log of the average cost (in
cycles) of evaluating a single unit cube on the RS/6000. Whenever a cube
is computed, the corresponding elements of the A, B, and C matrices must
be in registers. The compiled code leaves the value of an element of C in a
register for the duration of the inner loop, but the other two values must be

9This is the peak speed of the RS/6000. The carefully-tuned matrix multiplication
routine DGEMM in the LAPACK library achieves 90% of peak speed for large square
matrices that fit in main memory.

1Numerical analysts prefer that the unit cubes behind a fixed element of the C face be
evaluated from back to front, so that round-off effects can be better understood. This still
leaves many more than NN? legal orders of evaluation.



Figure 2: The Matrix Multiplication Solid.



loaded. If a value is in cache, moving it into a register takes 1 cycle. If the
value is not in cache, the cache line containing it and adjacent values must be
transfered from slower memory into the cache. This requires at least 7 more
cycles!!. The cache consists of 512 cache lines, each containing 16 adjacent
doublewords. Consider the cost of processing the i-th layer of the solid. Since
there are repeated passes along the i-th row of A, the cache’s replacement
algorithm gives priority to keeping the entire row in cache. The matrices in
our experiment were stored in column-major (FORTRAN) order, so the row
of A takes up N lines of cache. If N < 75, there is room in cache not only for
a row of A but also for the entire B matrix and the current row of C. Thus,
the computation takes about 2 cycles per unit cube, the cost of bringing the
A and B values into registers!?.

When N grows bigger than 75, even though the i-th row of the A matrix
may remain in cache, the B matrix and the i-th row of C will not. When N
gets a little larger, every 16 iterations of the inner loop will entail a cache
miss, and the computation takes on average about 2.5 cycles per unit cube.
When N grows to 481, the i-th row of A does not remain entirely in cache
since a column of B also takes up 31 cache lines and the current element of
C takes 1. By the time N gets to 640, each iteration of the inner loop entails
a cache miss. When this happens, one says the cache is thrashing.

In fact, something more dramatic happens as well. In order to bring a
data item from main memory into cache, its real address must be derived
from its virtual address. A Translation Lookaside Buffer (TLB) speeds this
mapping for some recently referenced pages of main memory. When N > 256,
the row of A no longer fits in the RS/6000’s TLB. By the time N reaches 512,
evaluation of each unit cube entails at least one 40-cycle penalty to update
the TLB.

As N grows beyond 2000, B and the i-th row of C will not fit in the
computer’s 48 megabytes of main memory. Soon, every 512 iterations'® of
the inner loop entails a page miss on the B matrix. Each assignment to the
C matrix also causes a page misses. It takes perhaps a fiftieth of a second

11 Actually, bringing a line into cache takes 14 cycles, but the last 6 are usually overlapped
with computation.

12The floating-point pipeline of the RS/6000 can initiate one multiply-add operation per
cycle. Concurrently, one floating-point register can be loaded per cycle. Since Program 1
requires two loads per multiply-add, it does not keep the floating-point pipeline busy.

13There are 512 doublewords to a page.



(500,000 cycles) to bring a page in from disk. Computing one layer takes
about 1,000N? 4 500,000 cycles. And when N grows so large that the i-th
row of A no longer fits in main memory (this happens at about N = 12,000
since each element is on a separate page), there will be a page miss per unit
cube, degrading performance by a further factor of 512.

Program 1 is a poor implementation of matrix multiplication. Well-known
techniques [RR51, MK69, 1T88, GJMS88, AG89] perform the same collec-
tion of multiply-adds in a different order. The matrix multiplication solid of
Figure 2 is partitioned into pieces, for instance ones that are 40 units in each
direction, which are computed one at a time. Processing a piece requires
computation proportional to its volume. If the surface area of the piece is
small enough to fit into, say, cache, then the cost of cache misses on the
piece will be roughly proportional to the surface area. Thus, the program’s
efficiency is related to the volume-to-surface area ratio, suggesting the use
of roughly cubic-shaped pieces!*. To improve usage of all levels of the mem-
ory hierarchy — the registers, cache, address translation mechanisms, main
memory, and disk — a recursive decomposition of pieces into subpieces into
subsubpieces can be used.

State-of-the-art compiler technology (e.g., strip mining and loop inter-
change [PW86]) can automatically make these improvements to Program 1.
On slightly more complicated problems, the capabilities of compilers are lim-
ited [CK89]. And for even more complex problems, there are improvements
that we cannot expect a compiler to discover. The replacement of recursive
transposes by a single bit-reversal permutation in the Fast Fourier Transform
algorithm of Section 7 might be an example.

An algorithm designer who models computer memory as a single level
(as in the RAM model) may not realize that such improvements are nec-
essary. The standard advice, “Strive for spatial and temporal locality of
reference,” is rather vague. As we have seen, programs remain efficient for a
range of problem sizes; then performance drops precipitously. If one has no
intuition about how much “locality” is needed, then one might introduce far
more overhead than needed, performing extra copies or invoking recursion
excessively. This can destroy performance almost as surely as having too
little locality. The Memory Hierarchy model of the next section confronts

141f two consecutive pieces share a surface, the communication cost is reduced, suggesting
1t might be better to use a pile of somewhat squat pieces.
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the algorithm designer with problems that are of direct relevance to efficient
programming.

3 The Memory Hierarchy Model

The following abstract model of computation reflects many of the memory
and communication limitations of sequential computers. A memory mod-
ule M, is a triple (sy,ny,ly). For any (possibly infinite) sequence o =
(My, My, ...) of memory modules, M H, is a memory hierarchy. Module M,
is said to be level u of the hierarchy. Intuitively, M, is a box that can hold
n, blocks, each consisting of s, data items, and a bus B, that connects the
box to the next module, M, ;. Blocks are further partitioned into subblocks.
The subblock is the unit of transfer along the bus from the previous module.
B, copies a level-u block atomically in [, cycles to or from level-(u + 1),
overwriting the old contents.

MH, can be depicted as a tower of modules with level 0 at the bot-
tom [ACS90]. Two memory hierarchies are shown in Figure 3 (the second
is a UM H, explained in the next section.) In the figure, the horizontal and
vertical dimensions of the rectangle depicting M, are proportional to the
logs of n, and s, respectively. A logarithmic scale is used in the figure so
that parameters that differ by a factor of over 1000 can be depicted visually.

The data items comprising a subblock at a given level are an indivisible
unit as far as that level is concerned. These items can only be rearranged or
modified by moving the subblock down to a lower level. To allow individual
data items to be altered, level 0 is given the ability to perform computations
on the data items, resulting in new data values. Since individual bits can be
changed at level 0, the subblock of Mj is the bit.

All buses can be active concurrently. The only restriction is that no data
item in the block being transfered on bus B, is available to buses B,_; or
By11 until the transfer of the entire block is complete.

It is useful to define other derived parameters. For convenience, the
following list gives standard notation for both the primitive and the derived
parameters:

o s, the blocksize or number of data items in a level-u block,

11
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Figure 3: Two Memory Hierarchies.
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e 1y, the blockcount or number of blocks that M, holds,

o [, the latency or time to move a block on B,,

® v, = nySy, the volume or number of data item held by M,
® ay, = ny/sy, the aspect ratio of M,

® py = Su/su_1, the packing factor at M,

o t, = l,/su, the transfer cost of By, in cycles per item, and

o b, = sy/ly, the bandwidth, the inverse of transfer cost of By,.

A memory hierarchy is not a complete model of computation, but instead
is used to model the movement of data. To study any particular algorithm,
reasonable assumptions need to be made about what a “data item” is and
what operations level 0 can perform on data items. All computations con-
sidered in this paper are oblivious, in the sense that there is a fixed order
in which the data items are accessed. If the M H model were to be used to
analyze a non-oblivious computation such as merge sort, then it would be
necessary to define carefully operations that control the movement of data
through the hieararchy.

Figures 3(a) and 4 show the M H model of the RS/6000 used in the
experiment of Section 2. For double-precision floating-point matrix opera-
tions, the basic data item will be an 8-byte doubleword, abbreviated dw.
The RS/6000 has 32 floating-point registers that each hold a doubleword, an
8Kdw cache (512 128-byte cachelines), a 128-entry TLB (each entry provid-
ing virtual-to-real address mapping for a 512dw-page), 6Mdw (48 megabytes)
of real memory, and about 256 Mdw of disk storage [BW90, H92]. The disk
i1s modeled, somewhat arbitrarily, as 64K 4Kdw-tracks. Level 0 can perform
a multiply-add every cycle, and fixed-point and branching instructions are

15

free’®. It takes 8 cycles to load a value that is not in cache into a register

and a total of 14 cycles to bring the cacheline into cache. The time to service

15Tf the data items are in registers and the 2-cycle pipelined multiply-add hardware is
used effectively, the hardware can perform a floating-point multiply-add instruction every
40-nanosecond cycle. At the same time, separate fixed-point and branch units (with a
separate instruction cache) do the branching, addressing and register loading needed to
support the floating-point operations.

13



a TLB miss depends somewhat on the state of the translation table data
structure; at minimum 32 cycles are required before the data can begin to
move into cache. The time to service a page miss depends somewhat on the
location of the disk-head.

block- | block- aspect | packing transfer
level size count latency volume | ratio factor cost
u Su Ny lu Vu ay Pu tu
4 Disk 4K 64K - 256M 16 8 -
3 Main | 512 12K | ~500K 6M 24 1 ~1K
2TLB 512 128 ~32 64K 0.25 32 ~0.06
1 Cache 16 512 14 (or 8) 8K 32 16 ~0.9 (or 0.5)
0 CPU 1 32 1 32 32 64 1

Figure 4: RISC System/6000 Model 530 Memory Hierarchy.

In addition to giving the primitive parameters, Figure 4 shows some de-
rived ones. The name “aspect ratio” comes from viewing M, as a rectangle
of height s, and width n,. The packing factor tells how many subblocks are
packed into a block. Notice that, except for level 2, the aspect ratios and
packing factors are moderately small integers'®. This would still be true if
the data item were a byte rather than a doubleword — aspect ratios listed as
32 would be 4 instead. The significance of these parameters is twofold. First,
the performance of the algorithms we consider is rather insensitive to the ac-
tual values of aspect ratios and packing factors, provided they meet certain
minimum values!”. Second, for the machines we have experience with, these
minimum values are usually met. Consequently, the UM H model defined in
the next section assumes these parameters are small integer constants.

16The fact that the RS/6000 has a very small a; aspect ratio correlates with our expe-
rience that achieving peak performance on linear algebra kernels was made more difficult
by the relatively small number of TLB entries. Fortunately, the very low transfer cost to
the TLB mitigates its small blockcount.

1"Experimental evidence [CSB86] can be interpreted to show that for a given volume
cache, the minimum cache miss ratio and communication costs occur for aspect ratios
between 4 and 16.
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The story is quite different for the transfer costs ¢t,, — the average number
of cycles required to move a data item. There is no consistency among the ¢,’s
at different levels. The transfer cost ¢, associated with the TLB is abnormally
low since only the data’s addressing information — not the data itself — must
be processed when a TLB miss occurs. On the other hand, ¢3 is very large
because magnetic media are much slower than semiconductor memory. Since
an algorithm’s performance is sensitive to these costs, the UM H model is
parameterized by a transfer cost function. The influence of this function is
studied in depth.

4 UMH Analysis

While the Memory Hierarchy model is useful for tuning algorithms for
particular machines, it is too baroque for clean algorithm analysis. The
Uniform Memory Hierarchy (UM H) model makes simplifying assumptions
that are representative of typical values. The UM H model assumes that
all levels of the memory hierarchy have the same aspect ratio a, = «, and
that all packing factors p, = p. The transfer costs of buses in a UMH
are given by a function f(u). The argument u is a level number, and f(u)
1s a non-negative number giving the transfer cost in cycles per item of bus
B,. Formally, the Uniform Memory Hierarchy UM H, , #() is M H,,, where
o = (My,M,...) and M, = (p“, ap, p*f(u)). We require p to be an
integer greater than 1, and we are generally satisified with programs that
are communication-efficient for some small integral value for a. Generally,
the transfer cost functions f(u) are very simple, for instance 1 (the constant
function), u (the identity), or p¥. A UM H not dissimilar from the RS/6000
is shown in Figure 3(b).

There are three levels of specification of a computation on a UM H:

1. An algorithm. The algorithm specifies the mathematics of a compu-
tation. Execution order and data movement strategies are left un-
specified. The algorithms in this paper are described informally, but
they may be formally specified in a concurrent programming notation
or as computational circuits, dataflow graphs, or program dependence
graphs [FOW87]. The matrix multiplication solid of Figure 2 is an

15



example of an algorithm; there are different algorithms for matrix mul-
tiplication that use fewer than O(N?3) operations [AHUT4].

2. A program. A program specifies the order of evaluation and the data
movement strategy of an algorithm. The process of finding a program
for an algorithm will be called choreographing the algorithm. The order
of evaluation can be given as a sequential RAM program, as with Naive
Matrix Multiplication in Program 1. Data movement strategies are of-
ten be given implicitly, e.g., as demand fetching with least-recently-used
replacement. Programs in this paper will be written in a procedural
notation described below.

3. A schedule. Given a particular set of input values to a program, a
schedule tells exactly when each block is moved along each bus. Even
if a program is oblivious, the schedule may depend on the alignment of
the data, that is, where each data item is in relationship to the block
boundaries at each level of the memory hierarchy. It is not necessary
to write a schedule to run a program; rather, the schedule is a trace of
what happens when a program runs. Schedules are used in proofs.

The programs for our algorithms are specified as one or more procedures
for each module in the memory hierarchy. Typically, a procedure is called
from a procedure one level above and makes a sequence of calls to procedures
one level below. To achieve greater efficiency, the arguments to a call may be
moved down before the results of a previous call have been moved back up.
Each memory module can be viewed as solving a sequence of problems with
a three-stage pipeline. In the first stage, the inputs to a procedure are moved
down from the level above. In the second stage, the procedure is invoked.
This will entail writing subproblems down to (and reading their solutions up
from) the level below. In the final stage, the solution is moved back up to
the next level. Because the second stage uses a different bus, its activity can
be concurrent with that of the first and last. Computation, which occurs at
My, is overlapped with communication.

A program specifies, for each bus, the order in which data items move
down the bus and the order in which they move up. The interleaving of these
two streams must also be specified. Unless another interleaving is given, we
assume that data moves down at the last possible moment that will still
enable it to arrive just-in-time when it is needed at My, and data moves

16



up at the first possible free cycle. This strategy prevents a memory module
from being flooded with more data than it can hold and is consistent with
the pipelining of procedure calls. Our model of computation is given the
ability to achieve appropriate schedules for such programs!®.

Problem specification entails defining where problem instances are lo-
cated. We adopt the convention that N x N input matrices initially reside
at level [log, N| of a UMH; on an M H they reside at the lowest level in
which they fit. For a given choice of M H or UM H parameters, the (U)M H
complexity of a program is the function of the problem size N that gives the
maximum running time, taken over all problem instances of size N, of the
best schedule for that instance.

Our interest is often not only in the big-O complexity of a program, but
in whether it wastes even a constant factor of its RAM speed. Thus, we
make the following definition:

e The communication efficiency ¢(N) of a program is the ratio of the
RAM complexity to the UM H complexity'®. For the purpose of cal-
culating ¢(N), the RAM complexity of a program is taken to be the
MH complexity on a two-level hierarchy with the UM H’s My module
and an arbitrarily large M;. Thus, the RAM complexity is the cost of
computation and moving data along the By bus®®.

The communication efficiency of a UM H program is analogous to measure-
ments in practice of the fraction of a computer’s peak speed sustained by
an application. A program is said to be communication-efficient if ¢(N)

80ne approach to implementing such a model would have a controller for each bus to
execute the procedure(s) for the adjoining module. An alternate approach would have an
addressing unit responsible for dispatching transfer requests to each of the buses. It is
easy to verify that such a unit need only dispatch a constant number of transfer requests
per cycle provided the transfer cost is nonincreasing and the packing factor is at least
2. In order to extend the model to handle nonoblivious computations, careful attention
would have to be given to specifying the computational power of the addressing unit or
controllers.

19For a given problem size, the instances with the worst running times on the RAM and
on the UM H may be different. We could have chosen to define ¢(N) to be the worst ratio
over all instances of size N. However, ¢(N) would then be unduly biased by instances that
were particularly easy on a RAM but of average difficulty on a UM H.

20In general, when we describe an algorithm, we will also specify Mo and give Bg enough
bandwidth so that our definition of RAM complexity coincides with the usual notion.
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is bounded below by a positive constant. Otherwise, if ¢(NV) gets arbitrar-
ily close to zero, the program is communication-bound. An algorithm is
communication-effictent if it has a communication-efficient program; it is
communication-bound if every program for it is communication-bound.

As an example, consider Program 1 for multiplying N x N matrices
naively on UM Hygggu, the model chosen in Figure 3(b) to resemble the
RS/6000. Given N, let v = |logg(N/16)|. Since N > 16(8Y), the blockcount
of level v, there is not room in level v to hold an entire row of the A ma-
trix plus a block of B. Thus, level v will thrash, that is, a new level-y block
will be moved in for each multiply-add. Notice that v = [logg(N/16)] >
logg(N/16) — 1 = logg(N/128). On UM Hyg g gu, bringing a block into level v
requires 8%V > (N/128)? cycles. Thus, the complexity of Program 1 on
UMHgggu is at least N3(N/128)> = 27'*N°. This matches our observed
10~*N® performance on the RS/6000 remarkably well. Since the RAM com-
plexity of Program 1 is O(N?3), the communication efficiency of Program 1 is
O(N™?); it is communication-bound on UM Hyg g gu. However, the standard
matrix multiplication algorithm can be rechoreographed as in Section 6 to
yield a communication-efficient program on this model.

Whether or not an algorithm A is communication-efficient on UM H, ,, (1)
depends on f(u). In many cases it is possible to nicely separate transfer cost
functions for which A is communication-efficient from those for which it is
communication-bound. To this end, we define:

e Given a and p, a function f(u) is a threshold function for algorithm
A if (1) A is communication-efficient on UM H, , s(4), and (2) for any

function g(u) such that inf 00 — 0, A is communication-bound on

g(u)
UMHg pg(u)-

It is not hard to show that if A is communication-efficient on a UM H,, , ()

and inf % > 0, then A is communication-efficient on UM Hy  4(.). Thus, a
threshold f)unction for an algorithm partitions all transfer cost functions into
two sets — those which support communication-efficient programs for the
algorithm and those which do not — according to whether inf % 1s positive
or 0.

A candidate for a threshold function can be constructed to ensure that
the time required to move the input and results along the bus to the next

smaller module is bounded by the computation time. To be precise:
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e The candidate threshold function f.(u) for an algorithm A is defined
as the minimum, over all problem sizes N that reside in level « + 1, of
RAM(N)/Data(N), where RAM(N) is the RAM complexity® of A
and Data(N) is the maximum number of data items in the input and
output of instances of size N.

The following lemma shows that the candidate threshold function satisfies
property (2) for a threshold function.

lemma 4.1 Let A be an algorithm that depends on all of its input data, and
let fo(u) be the candidate threshold function for A. Suppose g(u) is a function

such that inf % = 0. Then for any o and p, A will be communication-bound

on UMHa,p,g(u).

proof: Given any program P for A, we must show that for any ¢ > 0,
there exists an N such that RAM(N)/UMH(N) < €, where UMH(N) is
the complexity of P on UM H,, 5 g(u)-

Since inf % = 0, we can choose V such that % < €. By the def-

inition of f.(«), we can find N such that instances of size N reside in

level (v + 1) and f.(v) = RAM(N)  On UMH

Data(N) * a,pyg(u), Just moving the
input and output data items along the topmost bus B, will take at least
g(v)Data(N ) on some instance of size N. Thus, UM H(N) > g(v)Data(N),
Data(N
UMH(N)
fe(v RAM(N) Data(N) _ RAM(N .

g((v)) > Data((N)) UMH((N)) = UMH((N))’ as required. o

1
and so o) >

We now have ¢ >

It is not a priori clear that A will be communication-efficient on its candidate
threshold function f.(«). However, this turns out to be the case for the
algorithms considered below.

5 Matrix Transposition

21Gince an algorithm dictates the computations to be performed, if My is specified as in
the previous footnote, then the RAM complexity of any program for A will be the same.
Thus, the RAM complexity of an algorithm is well-defined.
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Matrix transposition, B := AT, is typical of algorithms that people have
tuned to memory hierarchies, improving performance significantly. This sec-
tion shows that the constant function 1 is a threshold function for transposi-
tion. Transposing square matrices can be choreographed on UM Hg 1 to be
communication-efficient, and for nicely aligned matrices, to have asymptotic
communication efficiency almost but not quite 1. For transfer cost functions
asymptotically slower than a constant, transpose is communication-bound;
its running time is the time to move the data to and from the highest level.
The first step in analyzing transposition is to specify the algorithm and the
details of the model that will be considered.

The problem considered here will be that of assigning to a matrix B the
transpose of a separate?? matrix A. The matrices are stored in column-major
order. The transpose algorithm??® analyzed here moves each element of A into
level 0 and moves it back up into the proper position of B.

It is natural to let the data item of the UM H model be the individual
matrix entry. Level 0 has whatever abilities it needs to keep track of indices.
The transfer cost of bus By is one cycle per item. Since each element of A
must move down into level 0 (one cycle) and move back up (a second cycle),
the RAM complexity of transposing N x N matrices is 2N2. Since there
are N? input data items and N? result data items, the candidate threshold
function is the constant function 1. The next subsection shows that it is
indeed a threshold function.

5.1 A Communication-Efficient Transpose Program

Program 2, based on well-known methods, has an asymptotic communi-
cation efficiency on UM H, ,1 of nearly 1, provided the data are aligned with
respect to block boundaries at all levels of the hierarchy. In the unaligned
case, the program is slower but still communication-efficient.

Theorem 5.1 Suppose that N = p», that o > 3, and that N X N square
matrices A and B are aligned so that the first element of each begins a level-w

22The results of this section also hold for transposing a square matrix in place. The
details are messier.

23There might be faster transpose algorithms that compress data to reduce communi-
cation time, or that avoid bringing certain elements into level 0.
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MT,41 (A[l:n,1:m], B[1:m,1:n]):
REAL VALUE: A; RESULT: B; INTEGER VALUE: n, m
{ This procedure resides in module u + 1, and will only be called
with n < p“*1 and m < p“*1 }
INTEGER: I, 11, Jo, J1
FOR ip FROM 1 TO n BY pY
i1 := MIN(ip+p%-1, n)
FOR Jo FROM 1 TO m BY p¥
J1 1= MIN(jo+p¥-1, m)
MT., ( Alio:i1, Jo:ji], Blioj1, iotir] )
END
MTy (a, b):
REAL VALUE: a; RESULT: b
b:=a
END

Program 2: Matrix Transposition.

block. Then MT,y,(A, B) on UM H, ,1 takes at most (2 + 2/p?)N? cycles to

transpose.

proof: We exhibit a schedule and verify that it is valid. Let A} be A,
and, foru = w —1,w — 2,...,0 and i = 0, ..., p2¥V=%) — 1 partition A¥™!
into p? submatrices, each p% x p¥, denoted A?p% ...,A?p2+p2_1. Let B¥ be
the submatrix of B into which (A¥)T will be copied; A¥ and BY are the
arguments to the (¢ 4+ 1)-th call to MT,. The schedule is as follows:

e AY moves down bus B, into M,, during cycles (21 —1)p? to 2ip? — 1.
It is transmitted by column from left to right. It displaces BY ,.

e The data items of A¥ are copied to B¥ all the way down at My during
cycles 2ip% to (21 + 2)p?¥ — 1.

o BY moves up By to My 1 during cycles (21 +2)p% to (21 + 3)p% — 1.
It is transmitted by column from left to right, and it overwrites the
subblocks of M1 that held A¥ ;.

21



To simplify the indices, time runs from cycle —p?"~2, when Agv_l begins

its downward descent into M,y_1, to cycle 20" + p?~=2 — 1, when the last
submatrix completes its upward ascent. Thus, the total time is as required.
To validate this schedule, we must show the following for each u < w:
(1) no submatrix moves down bus B, before it arrives at Myy1; (2) no
submatrix moves up bus By before it is complete; (3) at any time, M, is
required to hold at most three submatrices; and (4) no two transfers on bus
By, overlap.

The first submatrix Ai‘p2 of A?"’l is scheduled to start moving down

By, at cycle (2ip? — 1)p?¥, which is before A?"’l has fully arrived at My 11.
However, A?pz is a subset of the first p¥ columns of A?"’l. These columuns,
which start arriving at cycle (27 — 1)p?“*2 and require p“*! cycles apiece,
finish arriving at cycle (2ip% — p? + p)p?“. Since p > 1, AZP is in My41
before it is scheduled to move down B,. The remaining submatrices of
AU*! are not scheduled until AY*! has fully arrived, but well before AY™ is

displaced by B?j’ll. This verifies requirement (1); requirement (2) is similar.

To verify (3), notice that traffic on bus B, occurs in epochs of 2p?¥
cycles. During epoch 4, which goes from cycle 2ip% to cycle 2(i+1)p? —1,
AY is transposed into BY (clobbering A¥ ;) by the hierarchy below bus Bj,.
Meanwhile, submatrix B¥ ; moves up bus B, during the first half of epoch
i, and is replaced by A¥,; during the second half. So, M, need only be big
enough to hold AY, BY, and one of B{; and A¥,;. Thus, a = 3 suffices.

Finally, (4) is verified by observing that bus B, is used for the upward
movement of BY ; in the first half of epoch 7 and for the downward move-
ment AY,; during the second half. A half-epoch is exactly enough time to
move each submatrix. b«

If the columns of the matrices are not aligned on block boundaries, Pro-

gram 2 will take longer and require bigger modules. There are two sources of
performance degradation. First, a subblock of data might span a subprob-
lem boundary. Such a subblock might have to be moved along the bus to
the next lower level several times. Unfortunately, the most likely situation is
that nearly every subblock at every level above the first will span subproblem
boundaries. In this case, a column of a subproblem takes up two subblocks
instead of one. If a is 3, thrashing will result and Program 2 will not be
communication-efficient. If we assume o > 6, then communication-efficiency
is restored, though the program will run only about half as fast as in the

aligned case.
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A second source of performance degradation is that N may not be a power
of p, resulting in some undersized subproblems. For instance, if N = p™~1+1,
there will be four calls to MT,,_;. The degradation due to these extra calls
i1s at most a factor of 4, since transposing a partial block is no slower than
transposing a full block. In fact, the performance is a bit better, as stated
in the following theorem:.

Theorem 5.2 Transposing an N x N matriz stored in level w = [log, N|
by MT,y of Program 2 takes time at most 6N? on UM Hy 1 with oo > 6.

proof sketch: Consider the movement of level-4 blocks on the bus con-
necting level & to level #u+1. A block will be moved at most once for each
pY x p% subproblem of which it is a part. A level- block can belong to at
most three subproblems: the beginning of the block might end a column
of one subproblem, the middle can span an entire column of an undersized
subproblem (one having fewer than the usual p* elements in its columns),
and the end can begin a column of a third subproblem. (It follows from
N > p»~! > p¥ that there cannot be two adjacent undersized subprob-
lems.) Closer analysis reveals that at most half the blocks can span three
distinct subproblems, and the remainder will span at most two?*. Thus,
each bus will be utilized for at most 5N? cycles: 2.5N? for moving blocks
of A down, and 2.5N? for moving blocks of B up. The remaining factor of
N? is more than sufficient to account for the startup and ending latencies
of the hierarchical data movement. <

Thus, transposing square matrices is communication-efficient. If we adopt
the convention that M x N matrices reside at level log (max(M, N)), then
Program 2 will also be communication-eflicient for non-square matrices.

Our proofs reveal that properly sized and aligned matrix transpose will
take time close to 2N?, and otherwise it can take approximately 4N? or 5 N2
cycles. This is a large gap. Is there a better program that doesn’t have
such a penalty for awkward matrices? The question is rhetorical; the point

#Let b be a level-u block spans a column of an undersized subproblem. If N > 2p%,
each column of the original matrix will contain columns from at least two full length
subproblems and (at most) one undersized subproblem. Thus, the blocks before and after
b don’t contain columns from undersized problems. On the other hand, if N < 2p%,
then both the initial and final elements of b are part of the same subproblem, albeit
from different columns, except when the first elements of b contain the last elements of a
subproblem.
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1s, working with the UM H model leads algorithm designers to think about
certain issues. These issues are ones that must be addressed by programmers
who want to attain peak performance. A model that exposes the problem
should facilitate finding a robust and portable solution.

We do not wish to imply that our model captures all those issues that
have practical importance. In particular, the limited associativity of some
caches and TLB’s may be a large concern. There may also be issues involved
with getting the addressing code or vector operations performing optimally.
Further, the memory module sizes and transfer speeds of a particular machine
will differ from the UM H machine in ways that may affect the range of
possible solutions.

5.2 A Limit on Communication Efficiency

This subsection shows asymptotic communication efliciency of 1 is not at-
tainable on UM H, ,1 for transpose. There is unavoidable latency in getting
the operation started up.

Theorem 5.3 Suppose that N = p», that o and p are at least 2, and that
A and B are N x N matrices stored in column-major order at level w of the
memory hierarchy and are aligned so that the first element of each begins

a level-w block. Any program that choreographs the transpose algorithm on
UMH, ,1 requires at least (2 + ¢)N? cycles, where ¢ = 1/(6p*c).

proof: A block at some arbitrary level v < w of the result matrix B,
being a partial column of B, contains elements from p¥ different columns,
and hence blocks, of A. We will argue that before p¥ subblocks of A have
been transferred down out of the top level (level w), there’s not much useful
communication to be done on the bus B,,. Specifically, there aren’t yet any
complete blocks of B to be moved up, and there’s not enough room at
and below level v to hold much data that is moved down. To show that a
constant fraction of the RAM time is wasted, we will focus on a carefully
chosen level v that is a few levels down from the top of the hierarchy. The
details follow.

Let d be the unique integer such that p¢~! < 2a < p? Let v =
w — (d 4 2). There are two facts we will need to pull out of a hat later:
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1. p¥~1p¥ > N?%/(2p%a). This is derived as follows:
N2 = ,02W — (pw—lp)(pvpd+2) — pw—lpvp4pd—1 < ,0W_1,0v,04206-
Dividing both sides by 2p*a gives the desired inequality.
2. $p?Ya < N?/(3pa). This is derived as follows:

N2 — ,02W — p2vp2d+4 — p2vp4p2d > P2VP44a2-

Dividing both sides by 3p*a gives the desired inequality.

The result matrix B is partitioned into p»19t2 level-v blocks. Each
level-v block of B contains elements from pY different columns of A, and
hence from p¥ different level-(w — 1) blocks of A (since each column of A
is a distinct level w-block). Consider the state of the computation just
before timestep p*~!p¥. At most p¥ — 1 different columns of A can have
been involved in the computation so far, since moving a subblock down
from level w takes p»~! timesteps. Thus, no level-y blocks of B have been
completely filled in with their final values. Consequently, in the remaining
time, every level-v block of B must be moved up Byyi. Further, almost
all of the A matrix must be moved down that same bus. Only the z data
items that are currently stored at level v or below are excepted, where
z = ¥ sapt = ap2:2+_21_1 < apfilp” < %ap” such items. Thus,

the total time T required to compute B is at least p"~!p¥ (the current

timestep) plus N2 — z (to move the remaining data down into level v) plus
N? (to move all the complete blocks up). Substituting for z, we obtain
T > 2N?% 4 pW=1lpY — %apZV. By the two magic formulae given earlier,
T > 2N? + N%/(2p%) — N?/(3p%a) = (2+ 1/(6p%a))N?%. &

If « is sufficiently large, then contrary to our convention, the matrices

might fit in a level lower than level w. The techniques of this proof can be
adapted to show that even if the matrices are stored in the lowest level into
which they fit, asymptotic communication efficiency of 1 cannot be achieved.
Furthermore, if we hold the transfer cost of By at 1 (so the RAM-complexity
remains the same) but reduce all other transfer costs by a constant factor,
the communication-efliciency of a transpose program will improve slightly but
still be less than 1. The startup latency of transpose can only be eliminated

by making the transfer cost function be asymptotically zero.
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5.3 Rational permutations

Matrix transposition is an instance of a more general class of permuta-
tions, the rational permutations of Aggarwal, Chandra and Snir [ACS87]. Let
N=2"and I ={0,1,..., N—1}. For each ¢ in I, let [¢,,_1, ..., 20| be the binary
expansion of ¢. Suppose ¢ is a permutation on (n—1,...,0). Then o induces a
permutation R, on I defined by R,([in-1,...,%0]) = [to(n-1) - te(0)]- Finally,
if A and B are arrays over the index set I, then we say that B is obtained from
A via the rational permutation R, if for all ¢ in I, A(z) = B(R,(z)). A pro-
gram that given A produces B is said to implement the rational permutation
induced by o.

For example, if n is even and o(z) = ¢ + n/2 (mod n), then the array
obtained from a v/N x v/N matrix via the rational permutation R, is the
transpose of A. Another example, which will be used in Section 7, is the
bit-reversal permutation induced by o(z) = (n — 1) —¢.

Theorem 5.4 Given N =2", a > 6, 0 a permutation on (n —1,...,0), and
N-element arrays A and B residing at level [log,: N, the rational permuta-
tion R, taking A wnto B can be performed in at most 6N cycles on UM H, ;1.

proof sketch: The techniques of the transpose algorithm are adapted
to perform the rational permutation. Specifically, at an arbitrary level
v > 0, a rational permutation problem on p? elements is decomposed into
a sequence of rational permutation subproblems on p2(¥=1) elements, and
the subproblems are passed down to level y-1. In the nicely aligned case,
the decomposition can be done so that each subproblem and solution fit
into exactly p¥~! subblocks. In the unaligned case, a constant multiple
more blocks may be required.

We will describe the decomposition for the aligned case; the unaligned
case uses the same decomposition, but the data may span more subblocks.
In the aligned case, p is a power of two and each level-y subblock holds data
from A or B whose indices differ only on the least significant £ = (v—1)lgp
bits. Let T, = {0,1,....,k— 1} U {0(0),0(1),...,0(k — 1)}. We define a T\-
set to be a maximal subset of the index set I whose elements differ only in
bit positions in T),. T\, has between k and 2k distinct elements, depending
on o, and so a T)-set has at most 22* elements. Let S be a subset of A
indexed by a T-set. Since T), includes the low-order k bits and A is aligned,
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any level-y subblock that contains one element of S must lie entirely in S.
Similarly, since T) includes ¢(0),o(1),...,0(k — 1), Rs(S) completely fills
up any subblock that it intersects. Furthermore, every T-set is the union
of a collection of T),_1-sets, so problems can be recursively decomposed into
subproblems. Thus, a T),-set plays the same role for a rational permutation
that a square submatrix plays in the transpose program. The fact that a
T\-set may be smaller than p?V~1!
sets can be bundled together to form a subproblem of size p

elements is not a concern — several T)-

2(v=1) elements.

The remaining details are essentially the same as for transposition. {

A generalization of the class of rational permutations (also called “bit
permute” permutations) is the class of bit permute with complement permu-
tations [C92]. Under such a permutation, the :-th input element is permuted
to an address determined by rearranging the bits of ¢ and exclusive-oring
the result with some constant c¢. Techniques of the previous proof can be
adapted to achieve a communication efficient bit permute with complement
permutation on UM H, 1.

6 Matrix Multiplication

The O(N3) standard matrix multiplication algorithm depicted in Figure 2
is basic to many scientific subroutine libraries, such as ESSL [IBM86] and
LAPACK [ABetc92]. This section shows that p“/4 is a threshold function
for this algorithm. Thus, communication-efficient implementations exist if
and only if the transfer costs are no more than a constant higher than p*/4.
It also shows, as with matrix transposition, that a communication efliciency
of 1 cannot quite be achieved with such transfer cost functions.

6.1 Communication-Efficient Matrix Multiplication

The candidate threshold function for multiplication of N x N matrices
is approximately?® p¥/4 because three input matrices must travel down, and

25The smallest problem that resides in level 241 has N = p¥ 4+ 1. The candidate
threshold function f.(«) is exactly (p“+1)® cycles for a size N instance divided by 4(p“+1)?2
data items in the instance. This equals (o + 1)/4 cycles per item.
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MM, 4+1(A[1:n,1:1], B[1:,1:m], C[1:n,1:m]):
REAL VALUE: A, B; vaLuE rEsurT: C
INTEGER VALUE: n, m, |
INTEGER: I, 11, Jo, J1, Ko, K1
FOR ip FROM 1 TO n BY pY

i1 := MIN(ip+p%-1, n)
FOR Jo FROM 1 TO m BY p¥
J1 1= MIN(jo+p¥-1, m)
FOR ko FROM 1 TO | BY p¥
ky := MIN(ko+p¥-1, )
MM, ( Alio:i1, ko:ki], Blko:k1, jozji], Clio:i1, joji] )
END

MMy (a, b, ¢):

REAL VALUE: a, b; VALUE RESULT: ¢
c:=c + ab

END

Program 3: Matrix Multiplication.

one result matrix must travel up, the topmost bus in the N3 time it takes on
a RAM. This subsection presents a program for standard matrix multiplica-
tion with O(N®) running time on UM Hg ,, ;4. That, together with lemma,
4.1, shows that p“/4 is a threshold function.

Program 3, based on techniques going back at least thirty years [RR51],
recursively dices the matrix multiplication solid of Section 2 so as be com-
munication efficient on UM Hg ,, ,u /4.

Theorem 6.1 Suppose that N = p» and that N x N matrices A, B, and C
are aligned so that the first element of each begins a level-w block. Then for
any o > 6, MM\, (A,B,C) on UM Hg , ju ;4 updates C by the product of A and

B with communication efficiency ﬁ.

proof: As with the proof of Theorem 5.1, we exhibit a schedule and
verify its validity. Let P}¥ be the given problem C := C + A B. Program 3
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recursively decomposes problem Pi“"'1

Pz'Z:;3-|-p3—1' The schedule follows:

into p3 subproblems denoted P;;s to

o Problem PY moves down B, into M, during cycles (i — 3)p% to
ip3¥ — 1. The appropriate submatrix of A is transmitted by column
from left to right followed by the submatrices for B, and then C. In
the case of # = 0, this means that one item will be moved up and
three down By every cycle.

e Module My performs the multiplications for problem P during cycles
i34 to (14 1)p% — 1.

e The resulting submatrix of C for problem P moves up By, to M1
during cycles (7 + 1)p% to (i + 5)p3% — 1.

3W=3 when problem ng_l begins its down-

3W=3 _ 1 when the result of

Time runs from cycle —%p
ward descent into M,y_1, to cycle p3W + %p
problem P:sv:ll completes its upward accent. Thus, the total time is as
required. It is easy to verify that no bus is scheduled for more than one
transfer at a time, and that the most 2 problems are resident in a module
at any one time and hence a = 6 suffices.

In order to verify that there is enough time to move down the data for
problem PY, notice that P consists of three p“ x p¥ submatrices. Since
the data is nicely aligned, it comprises 3p¥ level-u blocks. Blocks on bus By,
take p”/4 cycles per item and each block contains p“ items. Thus, moving

3U cycles. Similarly, the results of problem P¥

1

the problem down takes %p
travel up B, in the allotted time.

Finally, we must show that data is available at the specified module
when it is scheduled to be moved. The first subproblem P;:)s_l of prob-

lem P¥ begins its descent 2p3“~3 cycles before P has finished arriving at
level u. However, this descent begins after all of the A and B submatrices
and more than half of the C submatrix have arrived. Thus, a compete
subproblem is available. The subsequent subproblems all overlap the mul-
tiplications of P¥. The upward movement of results of the subproblems
proceeds analogously. ©

Program 3 will be communication efficient on unaligned square matrices.
However, this may require o« = 12 (since submatrices may take up twice as

many blocks) and the communication efficiency drops, but by a factor of less
than 16 (since twice as many blocks are sent per subproblem and g—ths of
the top-level subproblems may be almost empty).
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6.2 A Limit on Communication Efficiency

The following theorem shows that the UM H complexity any program
implementing standard matrix multiplication is bigger than the RAM com-
plexity by an additive O( N?) startup latency even if the transfer cost function
is an arbitrary constant factor faster that the candidate function.

Theorem 6.2 Suppose N = p» and A, B, and C are N x N matrices stored
wn column-major order at level w of the memory hierarchy and are aligned so
that the first element of each begins a level-w block. For any ¢ > 0 and any
a, matriz multiplication, C:= C+ A B, on UMH,
efficiency at most

pcptt has communication-
W

1
143c2/4p% *

proof: The transfer cost ¢,,_1 on the topmost bus is ¢N/p cycles per item.
Bringing down a subblock, which contains N/p data items, takes cN2/p?
cycles. It takes c2N3/p3 cycles to move the first ¢N/p subblocks down from
the top level. Suppose these subblocks come from a columns of A and b
columns of B. Each of these aN/p element of the A matrix are multiplied
by at most 1 element from each of the b blocks of B since B is in column-
major order. Thus, at most abN/p multiplications are possible using this
data. This expression is maximized when a = b = ¢N/2p. Therefore, at
most ¢2N3/4p3 multiplications can be performed in the first ¢c2N3/p3 cycles.
Thus, the entire computation requires at least N3 4 3c2N3/4p3 cycles on
the UM H, while taking only N2 cycles on the corresponding RAM. &

Notice that the proof holds for the nonupdate form of matrix multiplica-
tion (C := AB). However, it would not go through if B were in row major
order. This suggests that it might be possible to compute C := ABT with
communication efficiency 1.

7 Fast Fourier Transforms

This section builds on the techniques of previous sections to address a
significantly more intricate problem. The forward Discrete Fourier Trans-
form (DFT) of a vector z of N complex numbers called points is the vector
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y of N complex numbers, defined by
N-1
Yo = > wizg (0<p<N),
g=0

where wy is the N-th root of unity, e >™/N. A Fast Fourier Transform
(FFT) is a technique for efficiently computing a DFT [V-L92]. Many FFT
algorithms make log N passes through the data. On UM H, ., the model
of interest, such techniques require moving Q(N log N) data items on the
topmost bus, which takes Q(N log? N) time. Thus, these algorithms are
communication-bound.

Alternatively, if N = K; K,, there is a N-point FFT algorithm that con-
sists of K3 independent FFT’s on K; points, multiplication of the intermedi-
ate results by powers of wy affectionately called twiddle factors, and then K;
independent FFT’s on K; points. An FFT algorithm with RAM complexity
O(N log N) results from recursively choosing K7 and K> within a constant
factor of each other. Further, it requires only O(N) data movement on the
topmost bus of a UM H. This algorithm is therefore appropriate for our
search for a communication-efficient program.

This section will establish that the identity function (in fact, any linear
function) is a threshold function for this FFT algorithm. After the standard
“Four-Step” program [B90] is shown to be communication-bound for any
linear transfer cost function, it will be rechoreographed to be communication-
efficient. To simplify presentation, we will only consider the case where
N = 2% for some integer r, where at each stage of the recursion K; = K,
down to Ky = Ky = 2, and where p = 2. To clarify explanations, we will
leave p in symbolic form where possible.

The Four-Step FFT program performs the following steps, treating its
input as a VN x v/N matrix stored in column-major order:

1. perform a v/ N-point FFT on each row.
2. multiply the entry in the jth row and kth column by e=27*/N

3. transpose the matrix.

4. perform a v/N-point FFT on each row.
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This algorithm takes O(N log N) time on a RAM.

The input to a problem of size N is assumed to reside in level [log . N| on
aUMH. Since moving O(N) data down the topmost bus in a communication-
efficient program can take at most O(N log N) time, the candidate threshold
function f.([log,. N1—1)is O(log N). Therefore, f.(u«)is O(u). However, the
next theorem shows that the Four-Step program is communication-bound at
the candidate function.

Theorem 7.1 For any ¢ > 0, any «, and any p > 2, the communication
. . 1

efficiency of the Four-Step program on UM H, ;. ts O(W).
proof: The running times of step 2, T5(N), and of step 3, Ty(N), are at
least the cost of moving the data up into the lowest level v into which all the
data fit. This level will be some constant & levels below level w = [log . N,
where k depends on a. Thus, the cost of moving the N data items is
Ne(w —1—k) ~ cN(log,: N — 1 — k). This shows T3(N) and T5(N)
are (N log N). Hence we obtain the following recurrence for T¢,(N ), the
UM H complexity of Four-Step program:

> 2V N T4 (VN) + To(N) + Ti(N)
> 2N T (VN)+ Q(Nlog N).

This recurrence implies that T¢s(N) is Q(N log Nloglog N). The result
follows immediately. A

The remainder of this section shows how to rechoreograph the Four-Step
program to be communication-eflicient on a UM H whose transfer cost func-
tion is the identity function. Since the candidate threshold function is O(u),
this theorem, together with lemma 4.1, confirms that the identity function
is indeed a threshold function.

Theorem 7.2 There is communication-efficient program for the Fast Fourier
Transform on N = 2¥ points aligned at a block boundary at level w (w =
27Y) on UM H, 2, for any o > 7.

proof: In this proof, we will define the bit-reversed FFT (BRFFT), which
can be obtained without recursive transposes. Since the bit-reversal permu-
tation is its own inverse, an FFT is obtained from the BRFFT by applying
a bit-reversal. Although this permutation is O(N log N), it is not done
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recursively and so only affects the running time by a factor of at most 2
(instead of loglog N). Next, multiplying by twiddle factors is examined.
This step is combined with the beginning of the subsequent BRFFT step.
Finally, a recursive decomposition of BRFFT in which subproblems fill up
entire subblocks is described.

The BRFFT is the FFT followed by a bit-reversal permutation BR, one
of the rational permutations described in Section 5.5. The permutation BR
applied to a vector can be formed by treating the data as a matrix, trans-
posing the matrix (which swaps the high-order bits with the low-order ones
in the vector’s addresses), applying a BR to each row of the matrix (which
reverses the order of the high-order address bits), and finally applying BR
to each column (reversing the lower-order bits). Thus, the BRFFT could
be computed by a “Seven-Step” program, namely (1) FFT each row, (2)
scale (i.e., multiply by the twiddle factors), (3) transpose, (4) FFT each
row, (5) transpose, (6) BR each row, (7) BR each column. However, steps
(3) through (5) can be replaced the single step, (3-5) FFT each column.
Next, step (6) can be moved ahead of step (3-5), since the columns re-
main identical (although arranged in a permuted order) when the rows are
each bit-reversed. Finally, step (6) can be further moved to be before step
(2), assuming the twiddle factors are suitably permuted. Thus, we have a
“Five-Step” program for BRFFT, (1) FFT each row (6) BR each row, (2)
scale, (3-5) FFT each column (7) BR each column. Now notice that the
first two steps are simply a set of BRFFT’s, as are the last two. This yields
a “Three-Step” BRFFT program, namely (a) BRFFT each row, (b) scale
by twiddle factors, and (¢) BRFFT each column.

The next refinement will combine the scaling step (b) with the BRFFT’s
by making use of three subroutines at all levels &« for which # is a power of
2.

e Full,(A,S) — Given A and S, arrays of p* complex numbers at level ,
multiply each element of A by the corresponding element of S and then
perform a BRFFT on A. Full,(A,S) is implemented as Rows,(A,S)
followed by Columnsy,(A,T,), where T, is the set of twiddle factors
needed for a BRFFT on p?“ points.

e Rows,(A,S) — Treating A and S as two-dimensional p¥ x p% matrices,
execute Full,/5(Afi,1: p“],S[i,1: p“]) for each i from 1 to p¥, that is,
perform a scaled BRFFT on each row.

e Columns,(A,S) — Treating A and S as two-dimensional p¥ x p¥ ma-
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trices, execute Full,/o(A[L: p%,j],S[1: p%,]]) for each j from 1 to p¥,
that is, perform a scaled BRFFT on each column.

Performing BRFFT on an array A of N = 2% points is now simply a matter
of calling Fully, (A,J), where J is the all-1 matrix and w = 271,

Notice that no data is transferred between levels in order for Full, to
call Rowsy, or Columns,. When Columns, in turn calls Full,/,, it passes
down one complete block of A and one of S. This data reaches level #/2 as
square matrices of p/2 level-(u/2) blocks. A sequence of such calls can be
scheduled using the now-familiar pipeline technique. On the other hand,
Rows,, cannot call Full,/, without reformatting its data, since each call on
Full,/, gets one point from each of p“ level-u blocks. To repack this data
into p¥/? level-(«1/2) blocks would require moving it down all the way to
M.

Rather than repacking the data, we will rechoreograph Rows, to avoid
the problem. First, we expand the call to Full,/; and its calls to Rows,/;
and Columns,/, inline, obtaining:

FOR | FROM 1 TO p¥
FOR j FROM 1 To p#/?
Full,,/a(Ali.j. 1:p%/?], S[i.j,1:p%/%])
FOR j FROM 1 To p#/?
Fully 4(Ali, 1:p%/2 j], Tyyal1:0/2,0])

In the above, A and S are treated as p“ x p“/? x p*/? arrays. Next, we
distribute the outer loop across the two inner loops and interchange the
loop order of both nested loops. It can be verified that these program
transformations do not change the semantics of the program. The result is:
FOR j FROM 1 ToO p#/?
FOR i FROM 1 TO p¥
Full/a(AlLj, 1:p/2], S[ij 1:0%/%])
FOR j FROM 1 ToO p#/?
FOR i FROM 1 TO p¥

Fully4(Ali,1:0%2,j], Ty pal1:0%/2.00)

Now block (stripmine) each inner loops into two nested loops, and treat A
and S as p*/2 x p#/2 x p"/2 x p¥/? arrays, yielding:
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FOR j FROM 1 To p#/?

FOR i3 FROM 1 TO p
FOR iy FROM 1 TO p
Fully/a(Aliviz.j. 1:p/2], S[i1iz,j, 1:p%/7])

FOR j FROM 1 ToO p#/?
FOR i3 FROM 1 TO p
FOR iy FROM 1 TO p
Fu”u/4(A[i1:i2,1:Pu/2:j]: Tu/2[1:pu/21j])

u/2
u/2

u/2
u/2

Finally, the two innermost loops can now be written as calls to Rows,/; as
follows:
FOR j FROM 1 To p#/?
FOR i3 FROM 1 TO p
Rows, /o (A[L:p"/2 ig,j,1:p/2], S[1:p%/2 is,j,1:p4/?])
FOR j FROM 1 To p#/?
FOR i3 FROM 1 TO p
Rowsy, /(AlL:p%/2 i, 1:p%/2 ], Toya[1:p%/2,jIR)

u/2

u/2

where the superscript R indicates that the vector Tu/2[1:p“/2,j] is to be

u/2

repeated p“/“ times.

The arguments of the calls to Rows,/, are subarrays comprising ,0“/2
level-(24/2) blocks. Furthermore, the innermost loops for Rows, (the loops
indexed by iz) make a sequence of calls to Rows,/, using data that is ar-
ranged sequentially in level-&z blocks. To start up this sequence of calls,
we need only move down one subblocks from each of 2p%/2 level u blocks,
then one subsubblock of each of these, and so on, until the data for the
first call reaches level #/2. Thereafter, additional subproblems can be
pipelined down (and the results moved up) at a rate of one subproblem
every 3p¥(u — 1) cycles, the time to move 3p¥ data items along the slowest
bus (the one just below level u).

Choose constant ¢ > 3 sufficiently large so that the base cases Rows; and
Columns; can be executed in ¢cNlg N cycles (where N = p? = 4). We will
show by induction that a call to Rows, on N = p?* data points, where # is a
power of 2, requires cN lg N cycles in My. Rows, entails a sequence of INz
calls to Rows, /5. By the above discussion, the data can be choreographed
to arrive at level #/2 at a rate of up to one problem every 3p“(u — 1) <

c(N%)lg(N%) cycles. Making the inductive assumption that each call to
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Rows,, /5 requires c(N%)lg(N%) cycles at My, we see that executing Rows,
requires QN%C(N%)lg(N%) = ¢Nlg N cycles in Mp. Another induction
shows that Columns, takes ¢cN1g N cycles and Full, takes 2¢N1g N cycles
in Mp. Using the pipeline techniques of earlier proofs, once problems start
arriving at My, it remains active until the computation is complete.

Finally, we argue that the startup latency is quite small. An O(N% log N)
preprocessing step brings all the twiddle factors to the appropriate levels
(Ty goes to level ). The time to bring the first data items to My — es-
sentially the time to move N3 blocks down the topmost bus plus the time
to move one block down each subsequent bus — is O(N% logN). V

It is not at all clear this program would be competitive on real computers.
Some authors [GJ87, B90] try to avoid bit-reversal permutations like the
plague; in practice, a single transpose is more efficient than a bit-reversal.
The penalty of recursive transposes is not large — O(log log V). Bailey [B90]
reports good results for the Four-Step program for N from 28 to 22° on Cray
supercomputers?. For problems of this size it is not necessary to invoke the
transpose recursively; simultaneous FFTs of the rows are performed by the
Cray library routine.

It is probably possible to improve upon the communication-efliciency of
the program developed above. One line of improvement would try to reduce
the cost of moving the twiddle factors. Another would return to the Four-
Step program and try to incorporate the recursive transposes into the FFT
steps.

8 Related Work

The UMH model is not the first to attempt to capture the cost of
moving data within the memory hierarchy. Numerous papers (for exam-
ple [F72, HK81, AV88, LTT89]) consider a two-level memory hierarchy. The
fact that the UM H model has more than two levels has several consequences.
First, it i1s more natural for asymptotic analysis of algorithms, since a single

26Carlson [C90a] reports improvement obtained by carefully exploiting the local memory
attached to each processor of the Cray-2. Section 9 discusses modeling such computers.
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machine can handle problems of all sizes. More significantly, the UM H fo-
cuses attention on the intermediate levels of storage. Thus, it raises questions
such as what “shape” subproblems are suitable for further subdividing, and
how should the reception of a problem be coordinated with the dispatching
of subproblems.

The models of Vitter and Shriver [VS90] focus on an orthogonal aspect
of some memories — particularly disk storage — that simultaneous data
transfers may be possible between separate memory modules and a single
lower module. It might be possible to incorporate this feature into the UM H
model.

Our work is closely related to, and heavily influenced by, the Hierar-
chical Memory Model (HM M) [AACS87| and the Block Transfer model
(BT) [ACS87], both of which have multiple levels. This section explores
the relationship between the UM H model and the HM M and BT models.
Each model is a family of machines parameterized by some function that
determines the cost of accessing data. An HM My, is a RAM machine that
is charged f(a) to reference the a-th location in memory. A BTy, is charged
f(a) to access address a but a block of length [ ending at @ may be moved at
cost f(a)+ l. Very roughly, the cost of touching each element in a block of
length [ ending at address @ can be approximated as [f(a) on an HM Mjy(,),
as max(l, f(a)) on a BTy(,), and as max(l,/a)f(log,: a) on a UMH, , )"
Figure 5 directly compares access costs of different size blocks in various
UMH, HMM, and BT models. High-bandwidth (low transfer cost) models
UMH, 2., HM Mog ., and BT, are shown on the left while low-bandwidth
models UMH,  u, HMM s, and BT.s are on the right?®. We chose to
compare these models because they are, in some sense, “threshold models”
for FFT (on the left) and matrix multiplication (on the right). Substantially
more points have been plotted for the UM H’s to convey a sense of the discon-

2T Addresses are assigned to the locations in a UM H linearly from the lowest module
My up. Comparing the UM H to these models is complicated by the fact that the transfer
cost 1s a function of level number rather than address. It can be shown that the transfer
cost of moving a value at address a down one level on a UM H,, , () is bounded between
f(log,: & — 1) and f(log,> Z + 1) cycles per item provided f(z) is monotonic and a is not
very small. Thus in this case, it is legitimate to compare apples (access cost functions of
the HM M and BT models) and oranges (transfer cost functions of the UM H model).

28Cost for another high bandwidth model, the unit bandwidth U M H of Section 5, could
have been plotted on the left as well. The values for this model would lie below the values

for the UM H; 3, by a small amount.
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tinuities associated with crossing level boundries. The top graphs compare
the cost of accessing a single data item at address a. The middle graphs
compare the cost of accessing 1/a items beginning at address a. And, the
bottom graphs compare the costs of accessing a items beginning at address
a.

These graphs show how similar the compared models really are when
block sizes are large. The H M Mo, probably underestimates, and the BT 15
undoubtably overestimates, the cost of accessing a single data item. (After
all, you can’t bring a bit in from disk without bringing a page into main
memory, but only a single page containing the bit gets brought in.) There
are also more subtle, but significant, differences between the models. The
HMM model provides no incentive for spacial locality whatsoever. The
HMM and BT models allow only one transfer at a time, while the UM H
model allows separate blocks to be transfered simultaneously on different
buses. The BT model is more flexible with respect to the sizes of blocks
to be transfered. Latency in the BT model and transfer cost in the UM H
model play complementary roles; each models both the latency and band-
width of a real computer with one (functional) parameter. The UM H model
is more flexible with respect to bandwidth (sufficiently large blocks always
have nearly unit bandwidth on the BT model).

The larger the communication cost function is on any model, the larger
the complexity of an algorithm. For very large cost functions, the complexity
is usually dominated by the time to touch all the input values. For the lowest
communication cost functions, the complexity of the algorithm studied is a
linear or nearly linear function of the RAM time. In between, there are
communication cost functions for which the computation and communication
are roughly in balance; this is the case for the threshold functions on the
UMH. Similar cusps occur for the HM M and BT models. The HM M or
BT complexities at the cusp are a factor of log N or loglog N greater than
either the time to touch the input or the computation time. In the UM H,
this factor is only a constant. This difference is primarily due to the ability
of a UMH to use its buses simultaneously.

Transpose requires very low communication costs to approach the RAM
complexity. Transposing a N x N matrix takes O(N?) timeon a UM Ha, p, 1
model. It takes ©(N?loglog N) time in the BT ,; model [ACS87], and
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O(N?log N) time in the HM Moz, model®® [AACS87]. The BT /7 achieves
its bound by moving each data item O(loglog N) time at constant cost per
item. In contrast, the UMH, ,; moves each data item twice on each of
log > N buses. It achieves its bound by overlapping these transfers. Whether
O(N?) or O(N?%loglog N) is a more realistic complexity for transpose proba-
bly depends on whether data movement on the different buses of the machine
in question can be overlapped effectively.

Matrix multiplication has a high computation-to-data ratio. All three
models achieve ©(N?3) even with high communication costs; all three use
essentially the same order of computation to do so. The UMH and HMM
programs use similar data movement strategies. The BT model achieves
O(N3) even on machines with extremely high access costs by using a some-
what unnatural data movement strategy. When decomposing a problem of
size N into subproblems, the natural unit of transfer is the column length
of the subproblem — O(N). The BT program transfers data in units that
are much larger — O(N?/loglog N) — in order to take advantage of its
unit bandwidth assumption. In our experience, the strategy of the UM H
and HM M programs is closer to that used to achieve high performance in
practice.

Essentially the same Four-Step FFT program is analyzed in each model.
This program has a O(N log N log log N) running-time on both the UM H, 4,
and the H M Miog, models. It has complexity O(N log N) on the BT 5 model.
For the HM M and BT models, these complexities are optimal; hence, there
1s no motivation to find a better program. However, in the UM H model, the
program can be rechoreographed to achieve an asymptotic speedup.

9 Parallelism

This section generalizes the M H and UM H models to handle parallelism
and establishes threshold functions for matrix multiplication on a range of
processors. A module of the Parallel Memory Hierarchy (PM H) model can
be connected to more than one module at the level beneath it in the hierarchy,

29Floyd’s two-level memory model [F72] also requires ©(N?log N) time because the
lower level of this model only holds a constant number (3) of size N blocks.
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giving rise to a tree of modules with processors at the leaves®.

A vast collection of different architectures for machines with more than
one processor currently exists. The memory and communication structure
of such parallel and distributed machines can often be modelled with a tree
structure. For instance, the root module can represent the global memory
shared by a collection of processors, and smaller modules attached below it
can represent the local caches of the individual processors. The non-uniform
communication costs of various interconnection topologies can be modelled,
though somewhat roughly, by using several levels of a PM H. For instance,
a mesh of 64 processors could be represented by a root module (representing
the total semiconductor memory of the machine) with four child modules
(one for each quadrant of the mesh), each parenting 4 subquadrant modules,
each of which has 4 processor modules as leaves. Further study is needed to
determine how to choose blocksizes and latencies to best reflect the actual
communication capabilities of the mesh.

Different classes of architectures are distinguished by how much branching
there is at each level. This is illustrated in Figure 6. The left-hand figure was
drawn3! using parameters representative of traditional supercomputers, such
as Cray’s €90, Fujitsu’s VP2600, and NEC’s SX-3. Such machines have their
branching near the leaves of the memory hierarchy tree. The middle figure
is representative of scalable multicomputers and multiprocessors that have
their semiconductor memory physically partitioned among the processors.
Such machines, which include Kendall Square Research’s KSR 1, Thinking
Machine’s CM5, and hypercube machines, have their branching in the middle
of the memory hierarchy. The final figure of a cluster of workstations shows
branching near the root. Thus, the “high-end” versus “low-end” spectrum is
reflected by the location of branching in the PM H model.

To complete a PM H model, one must specify the communication mode
between a module and its children. Clearly, the items being communicated

30A related extension allows multiple modules to be attached above a module. This
corresponds to a system with a single processor and a tree of memory modules growing
out of it. This has proved a useful tool for analyzing the behavior of multiple disks [VS90],
and might also be useful in understanding multiple banks of semiconductor memory.

31As before, the dimensions of the rectangles are the logarithms of the blockcount and
blocksize. Additionally, the number P of modules at a given level is depicted by 1+ 1g(P)
rectangles. Thus, for instance, the middle figure represents 256 processors arranged in 8
clusters.
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will be subblocks of the parent (or, equivalently, blocks of the children). One
might postulate a single logical bus connecting parent with children and allow
either point-to-point or broadcast communication on it. We do not explore
this alternative. The other alternative (a distinct bus connects each child to
the parent) can be further refined based on the kind of simultaneous access
permitted to a given location of a subblock in the parent. CRCW (Concur-
rent Read, Concurrent Write), CREW (“E” representing “Exclusive”), and
EREW are possibilities. The results of this section hold for all three choices.

A Uniform Parallel Memory Hierarchy, UPM H, ,, f(u),r, is @ PM H form-
ing a uniform 7-ary tree of (p“, ap”, p* f(u)) memory modules®?. The commu-
nication effictency of a UPM H program is the ratio of its PRAM complexity
to its UPM H complexity.

Theorem 9.1 If there is a communication-efficient program for multiplying
N x N matrices at level w = [log, N| on UPM Hq , f(u),r with T processors,

then f(u) is O((2)¥).

proof: The PRAM time for matrix multiplication is % The UPMH
time of a communication-efficient program can be at most ¢ times larger
for some constant ¢ > 0. Consider the communication cost. Since all of
each input matrix is used in the computation, there must be some bus out
of the root that has at least NT2 data items pass over it. Therefore, the item

transfer time of this bus is at most i_l\x /NT2 = T‘C,VAL = c7(2)" cycles. /

A corollary follows from observing that if p < 7, then (£2)“ approaches 0
asymptotically.

Corollary 9.2 On a UPMH, ;¢ with constant transfer cost ¢ and with
p < T (te., with more than N processors), multiplication of N X N matrices
will be communication-bound.

The following theorem shows that a program closely related to one de-
scribed by Valiant [V90] achieves communication-efficiency for transfer cost
functions not proscribed by the theorem above.

32The uniform parallel model is not realistic of today’s computers. Typically, these have
branching at only a few levels, and the sizes of the modules and the transfer costs are far
from uniform.
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Theorem 9.3 Multiplication of nicely aligned p*™ x p*” matrices at level w of
UPMH, , 2yus, can be computed with communication efficiency 1/(1 + i—;)
for 1 < 71 < p? provided T divides p* evenly.

proof: The goal is to use 7" processors and (1 + i—’;)p?’w/TW cycles to

perform C = C + . Each processor will compute 22\ values of C.
f C C + AB. Each 1 Z

As with the sequential multiplication program of Section 6.1, a problem
in a module is partitioned into p3 subproblems, each being a p*¥~! x p~!
subcube of the Matrix Multiplication Solid of Figure 2. Each subproblem is
transferred down one level and further partitioned into p® subsubproblems,
and so on. In the parallel case, ”T—s subproblems are pipelined through each
of the 7 buses to smaller modules. Since 7 divides p?, each bus handles a
multiple of p subproblems, and so the p subcubes with a given submatrix
of the result matrix C can all be handled by same module one level down.

Time on a level & bus is partitioned into epochs. The duration of an
epoch is the time required to perform all the multiply-adds of a level «
problem — (”T—s)“ cycles. During the first three quarters of an epoch, the
input to a level # problem (submatrices of A, B, and C) travel down the
bus; during the final quarter the solution to a previous problem moves up.
Notice that the time to transfer a p x p” matrix on a level « bus is exactly

(’;_—3)“/4, that is, one-quarter epoch.

The schedule of Theorem 6.1 is very aggressive; a problem occupies a
module for only two epochs, necessitating that a subproblem be dispatched
before the problem has fully arrived. A less aggressive schedule is easier to
find in the parallel case. The first 7 subproblems of the problem P arriving
at level & in epoch ¢ are dispatched at the beginning of the fourth quarter
of 7 (immediately after the entire problem has been received). Inductively,
it can be shown that processing P after it arrives at level & requires a full
level u epoch plus two subepochs (that is, epochs at level #-1) of (%3)“_1
cycles. There are p3/7 subepochs in an epoch. Since p > 2 and p? > T,
there are at least two subepochs in an epoch. Thus, the result matrix of P
can be transfered up from level # during the fourth quarter of epoch 7 4 2.
Notice that problem P occupies the module for exactly three epochs. Thus,
a =9 (that is, room for three problems in each module) suffices.

At the processor level, the duration of an epoch is a single cycle. As

soon as data starts arriving at a processor, the processor is kept busy until
3

it finishes its final multiply-add, (Z)" + 2 cycles later. At level w-1, the
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entire computation takes ’;_—3 +2 epochs of (’;_—3)""_1 cycles each. Dividing the

PRAM time p3¥ /7% by (’;_—3 + 2)(’;_—3)""_1, gives the desired communication
efficiency.

All that remains is to consider the complications posed by restrictive
communication modes. Since all the modules at a given level compute dif-
ferent subblocks of the C matrix, “exclusive write” does not pose a problem.
The same submatrix of A (and similarly, of B), might travel down p buses
during the same epoch since each submatrix is involved in p subproblems.
However, each submatrix has at least p columns. By staggering the order
in which columns are read, any restrictions on “concurrent reads” may be
finessed. oo

As with sequential matrix multiplication, the unaligned case can be made
communication-efficient by increasing . The communication efficiency will
be reduced since a column of a submatrix may span two subblocks, and
further reduced in the exclusive read or exclusive write cases since a subblock
may be shared by up to three submatrices. Still, these considerations only
affect the running time by a constant factor. Similarly, the case where 7
does not divide p? can be handled by increasing both « and the length of
the pipeline at each module; the uneven load entailed by splitting up each
problem over 7 buses can be evened out over 7 problems. Thus, (£)“ is a
threshold function for any 7 between 1 and p.

10 Conclusion

The purpose of this paper is both to present a model of computation
that captures memory architecture and to show that the model is useful for
designing high-performance programs. Many performance-tuning problems
that arise after the algorithm and data structures have been chosen come
down to data movement problems. The UM H model is a tool for quantifying
the efficiency of data movement, thus providing a bridge between algorithm
analysis and performance programming practice.

The Uniform Memory Hierarchy model is an abstraction of the Mem-
ory Hierarchy model, which in turn grew out of work on a high-performance
implementation of LAPACK for the RS/6000. Both models reflect character-

istics of the various levels within semiconductor memory — registers, cache,

45



address translation mechanisms, main memory, and semiconductor backing
store. They may also prove useful in modeling magnetic storage devices and
communication channels between processors. The UM H model is intended
to focus attention on aspects of algorithm and program design that are rele-
vant to a wide class of machines.

Analyses are give for several problems that have been studied using other
models [F72, HK81, ACS87, AACS87, LTT89] that consider the cost of mov-
ing data — matrix transpose and other rational permutations, matrix multi-
plication, and Fast Fourier Transforms — to facilitate comparison of results.
We leave open the question of how to extend our model for nonoblivious
problems such as sorting.

The analyses in this paper proceed in a similar fashion. A model is chosen
for which the time to move just the input and output data on the topmost
bus is equal to the computation time. A pipelined program is exhibited that
is communication-efficient on that model. For matrix transpose and multi-
plication, explicit “two-epoch” pipelines were presented that have very tight
timing constraints. For parallel matrix multiplication, a looser three-epoch
pipeline was used. The advantage of the shorter pipeline is smaller memory
requirements (as measured by the minimum « needed) and a slightly reduced
startup latency. The paper establishes threshold functions that separate
transfer cost functions for which each algorithm is communication-efficient
from those for which it is communication-bound. The constant function 1
is a threshold function for matrix transpose, the identity function is one for
FFT, and p” is for matrix multiplication. A threshold function for parallel
matrix multiplication on a UPMH is (2)“.

UMH analysis is geared toward determining, and improving, constant
factors. This activity is the theoretical analog of tuning a program for peak
performance. We have presented matrix transpose and multiplication pro-
grams with communication efficiencies almost, but not quite, 1 for nicely
aligned matrices. We also have shown that no program for matrix transpose
or multiplication can achieve communication efficiency of 1 on models with
transfer costs given by their threshold functions.

A novel feature of the M H and UM H models is that buses can be active
simultaneously. Hence, one seeks a program in which the communication
cost along each bus is dominated by the computation rather than one that
reduces the sum of the communication costs along all buses. In complexity
analyses, this can make an asymptotic improvement. An interesting line of
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research would be to investigate what combination of architectural, language,
operating-system and compiler features would facilitate a higher degree of
overlapped or pipelined data movement than is now possible.

We believe we are justified in inflicting yet another model of computation
on the Computer Science community. The UM H model can express the kind
of tight control over data movement that is necessary for achieving near-peak
performance on important computation kernels. Designers of both software
and hardware currently try to present the programmers with the illusion of
a RAM. There is no question that the RAM paradigm makes achieving a
moderate level of performance easier, but it is worth questioning whether the
RAM model is helpful for attaining high performance [C90b]. Performance
programmers spend days rewriting inner loops to trick their compiler’s regis-
ter allocator, analyzing how 2-way or 4-way associative caches will behave on
certain programs, and learning the messy details of disk behavior and com-
munication implementations. These burdens are imposed because there is
no direct way to dictate which blocks should be moved into registers, cache
or main memory. It is our hope that programming tools will be designed
to support the illusion of a MH or UMH (and for parallel computers, a
PMH), and that performance programming will then be easier since a sin-
gle mechanism (the memory module) will suffice for all the levels of memory
and communication. We emphasize that such tools should supplement, not
replace, the standard tools.

Secondly, UM H analysis suggests principles for computer architecture
and system design. For example, we have seen that having an aspect ratio
of at least 8 or so has made designing certain programs simpler. This pro-
vides fresh insight into the question of how large cachelines and pages should
be. Similarly, knowing the threshold function for various algorithms suggest
how much bandwidth is needed to support efficient implementations of those
algorithms. We can also quantify how much speed is gained by allowing com-
munication along the various buses to overlap. Ultimately, just as computer
hardware and software have evolved to support the RAM illusion, we hope
they will evolve towards the UM H and UPM H models.

A third justification pertains to parallelism. There is a recognized need for
a “type architecture” [S86] or “bridging model” [V90] that makes a closer con-
nection between parallel algorithm design and actual multiprocessors. When
looking for such a model, people often start with the assumption that the
RAM model is an unqualified success for sequential computing, and thus is
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a good starting point. But peak performance is of paramount importance in
parallel processing. Thus, the UM H might be a better beginning. In the
examples of this paper, the effort required to choreograph a program for a
UM H model is virtually the same as needed for parallelization.

A final justification is our hope that the models introduced in this paper
have pedagogic value. Caches, backing store and virtual memory manage-
ment are usually considered to be so messy that they should only be men-
tioned in architecture or operating system courses. Similarly, performance
programming is currently regarded as something of a black art. We hope
that the M H and UM H models, and the visualizations presented in this
paper, will suggest ways that these subjects can be integrated into in the
Computer Science curriculum.
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