
The Uniform Memory HierarchyModel of ComputationBowen Alpern, Larry Carter, Ephraim Feig, and Ted SelkerIBM Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598November 2, 1992Abstract | The Uniform Memory Hierarchy (UMH) model introduced in this papercaptures performance-relevant aspects of the hierarchical nature of computer memory. Itis used to quantify architectural requirements of several algorithms and to ratify the fasterspeeds achieved by tuned implementations that use improved data-movement strategies.A sequential computer's memory is modelled as a sequence hM0;M1; :::i of increas-ingly large memory modules. Computation takes place in M0. Thus, M0 might model acomputer's central processor, while M1 might be cache memory, M2 main memory, andso on. For each module MU , a bus BU connects it with the next larger module MU+1.All buses may be active simultaneously. Data is transferred along a bus in �xed-sizedblocks. The size of these blocks, the time required to transfer a block, and the number ofblocks that �t in a module are larger for modules farther from the processor. The UMHmodel is parameterized by the rate at which the blocksizes increase and by the ratio ofthe blockcount to the blocksize. A third parameter, the transfer cost (inverse bandwidth)function, determines the time to transfer blocks at the di�erent levels of the hierarchy.UMH analysis re�nes traditional methods of algorithm analysis by including the costof data movement throughout the memory hierarchy. The communication e�ciency of aprogram is a ratio measuring the portion of UMH running time during whichM0 is active.An algorithm that can be implemented by a program with positive asymptotic communi-cation e�ciency is said to be communication-e�cient. The communication e�ciency of aprogram depends on the parameters of the UMH model, most importantly on the transfercost function. A threshold function separates those transfer cost functions for which analgorithm is communication-e�cient from those that are too costly. Threshold functionsfor matrix transpose, standard matrix multiplication, and Fast Fourier Transform algo-rithms are established by exhibiting communication-e�cient programs at the thresholdand showing that more expensive transfer cost functions are too costly.A parallel computer can be modelled as a tree of memory modules with computationoccurring at the leaves. Threshold functions are established for multiplication of N � Nmatrices using up to N2 processors in a tree with constant branching factor.1



1 OverviewTheoretical computer science does not address certain performance issuesimportant for creating scienti�c software. Careful tuning can speed up aprogram by an order of magnitude [GJMS88]. These improvements followfrom taking into account various aspects of the memory hierarchy of thetarget machine. This paper presents a model of computation that capturesthese performance-relevant characteristics of computers.Big-O analysis on the traditional Random Access Machine (RAM) modelof computation [AHU74] ignores the non-uniform cost of memory accesses.Section 2 illustrates the gap between traditional theory and practice on anaive matrix multiplication program. For the RAM model, where everymemory access takes one unit of time, the complexity1 of this program isO(N3). However on a real computer2, cache misses and address translationdi�culties slow moderately large computations down considerably (by a fac-tor of 40). On problems that are too big for main memory, page missesfurther reduce performance (�rst by another factor of 25 and, for still largerN , by a further factor of 500). A graph of time versus problem size looks morelike O(N5) than O(N3). To achieve O(N3) performance, the programmer3must understand the computer's memory hierarchy.A �rst step is the Memory Hierarchy (MH) model of Section 3. A sequen-tial computer's memory is modelled as a sequence of (usually increasinglylarge) memory modules hM0;M1; :::i, with buses connecting adjacent mod-ules. All of the buses can be active at the same time. Data in module MUis partitioned into blocks, and each block is further divided into subblocks.A level-U block is the unit of transfer along the bus connecting module MUand next larger module MU+1. A level-U block is also a level-(U + 1) sub-block. The MH model has three parameters per memory module that tellhow many data items are in each block, how many blocks the module canhold, and how many cycles it takes to transfer a block over the bus. Compu-tations | arithmetic operations, comparisons, indexing, and branching |1That is, the worst-case running time on a RAM as a function of problem size N ,where N is the maximum of the matrix dimensions.2In this case, an IBM RISC System/6000 model 530 computer, hereafter the RS/6000.3Matrix multiplication is su�ciently simple that it may su�ce to use a compiler withsuch optimizations as strip mining and loop interchange [PW86].2



take place in M0. If a program is written against the MH model, and themodel's parameters re
ect a particular computer, then the program can betranslated to run e�ciently on the computer. (Translating a MH programmay be easy or hard depending on details of the machine, operating systemand programming language.)The many parameters of the Memory Hierarchy model can obscure al-gorithm analysis. Furthermore, an algorithm designer would like be ableto write a single program that can be compiled to run well on a variety ofmachines. These considerations call for a model that is more accurate thanthe RAM model and yet is less complicated than the MH model. The Uni-form Memory Hierarchy (UMH) model of Section 4 reduces the zoo of MHparameters to two constants (the aspect ratio and the packing factor) anda transfer cost function. This model characterizes memory hierarchies wellenough to confront an algorithm designer with many of the problems faced bya performance tuner. Yet the model is simple enough to allow analysis. Webelieve that it will be possible to construct compilers that translate UMHprograms to run e�ciently on a broad class of computers.UMH analysis of a program compares the performance on a RAM modelto the performance on a UMH model. In order to focus on the di�erentcommunication costs | and not the computational power | of the twomodels, the RAM model used in this paper is aMH model with an in�nitelylarge module M1. The communication e�ciency of a program is the ratio ofits RAM -complexity to its UMH-complexity; it is a function of the problemsize. A program is said to be communication-e�cient if it has asymptoticcommunication e�ciency greater than 0. Whether or not an algorithm hasa communication-e�cient program depends on the transfer cost function.Section 4 de�nes threshold functions that separate transfer cost functionsthat allow an algorithm to be implemented communication-e�ciently fromthose that do not.Section 5 gives a transpose program with positive asymptotic communi-cation e�ciency4 assuming constant transfer cost throughout the memoryhierarchy, and it is shown to have communication e�ciency almost but notquite 1 for \nicely aligned" matrices. (A matrix stored in level U is nicelyaligned if the �rst element of each column begins a level-U block.) Section 54Simultaneous data transfers on the multiple buses overcome the 
(N2 log logN ) lower-bound for the corresponding Block Transfer model [ACS87].3



also shows than no program for transposing a square matrix can have anasymptotic communication e�ciency of 1.Section 6 shows how to rechoreograph the naive matrix multiplicationprogram of Section 2 to be communication-e�cient even if the transfer costsrapidly increase as one goes up the hierarchy. At the threshold function,matrix multiplication has communication e�ciency of almost 1 for nicelyaligned matrices, but again communication e�ciency of 1 is shown to beunattainable.Section 7 examines a Fast Fourier Transform (FFT) algorithm at itsslowly increasing threshold function. The straightforward program for thisalgorithm has UMH complexity O(N logN log logN), but the RAM com-plexity is O(N logN), so its asymptotic communication e�ciency is 0. Sucha program is said to be communication-bound. Careful rechoreography of thealgorithm results in a communication-e�cient program.Section 8 compares the UMH model to other models that incorporatenon-uniform costs of memory references.Section 9 incorporates parallelism in the model. A parallel computer ismodelled as a uniformly branching tree of memorymodules with processors atthe leaves. Threshold functions are established for parallel matrix multiplica-tion of N �N matrices for various numbers of processors. For instance, withN processors, a communication-e�cient program requires constant transfercosts.2 Naive Matrix MultiplicationThis section examines the performance of a simple 4-line matrix multipli-cation program. Classical RAM analysis says that the running time of thisprogram should be O(N3). Experimental data on an RS/6000 suggests thatO(N5) might be a better approximation. This discrepency is explained bytaking into account the memory hierarchy of the computer.Program 1 computes C := C + A B, where A, B, and C are matrices5. IfA, B, and C are square N �N matrices, the assignment statement is iterated5Linear algebra packages, such as ESSL [IBM86] and LAPACK [ABetc92] use this\update" form since it facilitates problem decomposition. Analysis of C := A B issimiliar. 4



NaiveMM(A[1:n,1:l], B[1:l,1:m], C[1:n,1:m]):real value: A, B; value result: Cinteger value: n, m, linteger: i, j, kfor i from 1 to nfor j from 1 to mfor k from 1 to lC[i,j] := C[i,j] + A[i,k]B[k,j]endProgram 1: A Naive Program for Standard Matrix Multiplication.N3 times. The RAM -complexity of Program 1 is:N3 +O(N2):This assumes that a multiply-and-add instruction, along with incrementingaddress and index variables, loading the needed data into registers, and exe-cuting a conditional branch, can all be performed as a single operation. TheO(N2) term re
ects the loop-setup cost.To see how closely the RAM analysis corresponds to practice, we rana FORTRAN version of Program 1 on square matrices that varied in sizefrom 35 � 35 to 2000 � 2000. The results of this experiment are reported inFigure 1. The logarithm6 of N is the horizontal axis of this graph; the verticalaxis is the log of the running time of the program (in cycles) divided by N3.The RAM analysis leads one to expect that the data points would approachthe horizontal axis. This does not appear to be the case. A circle (�) plotsa data point; a small question mark (?) plots an estimated7 value. The solidline, a rough attempt to approximate the observed data with a straight line8,represents a running time of 10�4N5. The analysis of Section 4 will ratifythis O(N5) behavior.6In this paper, an unadorned log is the logarithm base 10, and lg is base 2.7The last data point (N = 2000) represents a running time of over �ve days. It wasnot practical to gather more data.8The slope of a line through points plotted on a log{log graph corresponds to theexponent of a polynomial approximation of the data.5
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Figure 1: Execution Rate of Naive Matrix Multiplication on an RS/6000.6



An alternate interpretation is represented by the horizotal lines. The hor-izontal axis represents one 
oating-point multiply-and-add instruction percycle9. The �rst dotted line represents the cost of loading two data itemsper multiply-add. It �ts the initial data points. A second dotted line, rep-resenting the cost of translating a virtual address into a real one for eachmultiply-add, �ts the next group of points. A third represents the cost ofa page miss for every 512 multiply-adds. This line picks up the �nal datapoint and the �rst group of estimated values. The �nal dotted line, repre-senting the cost of a page miss for every multiply-add, is an estimate of theperformance of Program 1 for matrices bigger than about 12; 000 � 12; 000.Verifying a single point on this line would require a 3:5 gigabyte disk and1095 years. Before explaining why Program 1 exhibits this somewhat bizarrebehavior, let's take a deeper look at matrix multiplication in general.Calculation of the updating matrix productC[1:n,1:m] := C[1:n,1:m] + A[1:n,1:l] B[1:l,1:m]can be visualized as a n�m�l rectilinear solid as in Figure 2. Matrices Aand B form the left and top faces of the solid, and the initial value of C ison its back face. The �nal value of C is formed on the solid's front. Eachunit cube in the interior of the solid represents adding the product of itsprojections on the A and B faces to a running sum. An element of the frontface is the �nal value of the running sum computed in the unit cubes behindit. Evaluation of all of the unit cubes in any order will compute the result10.Program 1 �rst processes the upper left hand row of unit cubes (indexed by kfrom back to front), then moves to the second and subsequent rows (indexedby j from left to right) of the upper layer, and �nally proceeds to the secondand subsequent layers (indexed by i from top to bottom).The vertical axis of Figure 1 represents the log of the average cost (incycles) of evaluating a single unit cube on the RS/6000. Whenever a cubeis computed, the corresponding elements of the A, B, and C matrices mustbe in registers. The compiled code leaves the value of an element of C in aregister for the duration of the inner loop, but the other two values must be9This is the peak speed of the RS/6000. The carefully-tuned matrix multiplicationroutine DGEMM in the LAPACK library achieves 90% of peak speed for large squarematrices that �t in main memory.10Numerical analysts prefer that the unit cubes behind a �xed element of the C face beevaluated from back to front, so that round-o� e�ects can be better understood. This stillleaves many more than NN3 legal orders of evaluation.7



Figure 2: The Matrix Multiplication Solid.8



loaded. If a value is in cache, moving it into a register takes 1 cycle. If thevalue is not in cache, the cache line containing it and adjacent values must betransfered from slower memory into the cache. This requires at least 7 morecycles11. The cache consists of 512 cache lines, each containing 16 adjacentdoublewords. Consider the cost of processing the i-th layer of the solid. Sincethere are repeated passes along the i-th row of A, the cache's replacementalgorithm gives priority to keeping the entire row in cache. The matrices inour experiment were stored in column-major (FORTRAN) order, so the rowof A takes up N lines of cache. If N � 75, there is room in cache not only fora row of A but also for the entire B matrix and the current row of C. Thus,the computation takes about 2 cycles per unit cube, the cost of bringing theA and B values into registers12.When N grows bigger than 75, even though the i-th row of the A matrixmay remain in cache, the B matrix and the i-th row of C will not. When Ngets a little larger, every 16 iterations of the inner loop will entail a cachemiss, and the computation takes on average about 2:5 cycles per unit cube.When N grows to 481, the i-th row of A does not remain entirely in cachesince a column of B also takes up 31 cache lines and the current element ofC takes 1. By the time N gets to 640, each iteration of the inner loop entailsa cache miss. When this happens, one says the cache is thrashing.In fact, something more dramatic happens as well. In order to bring adata item from main memory into cache, its real address must be derivedfrom its virtual address. A Translation Lookaside Bu�er (TLB) speeds thismapping for some recently referenced pages of main memory. WhenN > 256,the row of A no longer �ts in the RS/6000's TLB. By the timeN reaches 512,evaluation of each unit cube entails at least one 40-cycle penalty to updatethe TLB.As N grows beyond 2000, B and the i-th row of C will not �t in thecomputer's 48 megabytes of main memory. Soon, every 512 iterations13 ofthe inner loop entails a page miss on the B matrix. Each assignment to theC matrix also causes a page misses. It takes perhaps a �ftieth of a second11Actually, bringing a line into cache takes 14 cycles, but the last 6 are usually overlappedwith computation.12The 
oating-point pipeline of the RS/6000 can initiate one multiply-add operation percycle. Concurrently, one 
oating-point register can be loaded per cycle. Since Program 1requires two loads per multiply-add, it does not keep the 
oating-point pipeline busy.13There are 512 doublewords to a page. 9



(500; 000 cycles) to bring a page in from disk. Computing one layer takesabout 1; 000N2+500; 000N cycles. And when N grows so large that the i-throw of A no longer �ts in main memory (this happens at about N = 12; 000since each element is on a separate page), there will be a page miss per unitcube, degrading performance by a further factor of 512.Program 1 is a poor implementation of matrixmultiplication. Well-knowntechniques [RR51, MK69, IT88, GJMS88, AG89] perform the same collec-tion of multiply-adds in a di�erent order. The matrix multiplication solid ofFigure 2 is partitioned into pieces, for instance ones that are 40 units in eachdirection, which are computed one at a time. Processing a piece requirescomputation proportional to its volume. If the surface area of the piece issmall enough to �t into, say, cache, then the cost of cache misses on thepiece will be roughly proportional to the surface area. Thus, the program'se�ciency is related to the volume-to-surface area ratio, suggesting the useof roughly cubic-shaped pieces14. To improve usage of all levels of the mem-ory hierarchy | the registers, cache, address translation mechanisms, mainmemory, and disk | a recursive decomposition of pieces into subpieces intosubsubpieces can be used.State-of-the-art compiler technology (e.g., strip mining and loop inter-change [PW86]) can automatically make these improvements to Program 1.On slightly more complicated problems, the capabilities of compilers are lim-ited [CK89]. And for even more complex problems, there are improvementsthat we cannot expect a compiler to discover. The replacement of recursivetransposes by a single bit-reversal permutation in the Fast Fourier Transformalgorithm of Section 7 might be an example.An algorithm designer who models computer memory as a single level(as in the RAM model) may not realize that such improvements are nec-essary. The standard advice, \Strive for spatial and temporal locality ofreference," is rather vague. As we have seen, programs remain e�cient for arange of problem sizes; then performance drops precipitously. If one has nointuition about how much \locality" is needed, then one might introduce farmore overhead than needed, performing extra copies or invoking recursionexcessively. This can destroy performance almost as surely as having toolittle locality. The Memory Hierarchy model of the next section confronts14If two consecutive pieces share a surface, the communication cost is reduced, suggestingit might be better to use a pile of somewhat squat pieces.10



the algorithm designer with problems that are of direct relevance to e�cientprogramming.3 The Memory Hierarchy ModelThe following abstract model of computation re
ects many of the memoryand communication limitations of sequential computers. A memory mod-ule MU is a triple hsU ; nU ; lUi. For any (possibly in�nite) sequence � =hM0;M1; :::i of memory modules, MH� is a memory hierarchy. Module MUis said to be level U of the hierarchy. Intuitively, MU is a box that can holdnU blocks, each consisting of sU data items, and a bus BU that connects thebox to the next module,MU+1. Blocks are further partitioned into subblocks.The subblock is the unit of transfer along the bus from the previous module.BU copies a level-U block atomically in lU cycles to or from level-(U + 1),overwriting the old contents.MH� can be depicted as a tower of modules with level 0 at the bot-tom [ACS90]. Two memory hierarchies are shown in Figure 3 (the secondis a UMH, explained in the next section.) In the �gure, the horizontal andvertical dimensions of the rectangle depicting MU are proportional to thelogs of nU and sU respectively. A logarithmic scale is used in the �gure sothat parameters that di�er by a factor of over 1000 can be depicted visually.The data items comprising a subblock at a given level are an indivisibleunit as far as that level is concerned. These items can only be rearranged ormodi�ed by moving the subblock down to a lower level. To allow individualdata items to be altered, level 0 is given the ability to perform computationson the data items, resulting in new data values. Since individual bits can bechanged at level 0, the subblock of M0 is the bit.All buses can be active concurrently. The only restriction is that no dataitem in the block being transfered on bus BU is available to buses BU�1 orBU+1 until the transfer of the entire block is complete.It is useful to de�ne other derived parameters. For convenience, thefollowing list gives standard notation for both the primitive and the derivedparameters:� sU , the blocksize or number of data items in a level-U block,11
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Figure 3: Two Memory Hierarchies.12



� nU , the blockcount or number of blocks that MU holds,� lU, the latency or time to move a block on BU ,� vU � nUsU , the volume or number of data item held by MU ,� aU � nU=sU , the aspect ratio of MU ,� pU � sU=sU�1, the packing factor at MU ,� tU � lU=sU , the transfer cost of BU in cycles per item, and� bU � sU=lU , the bandwidth, the inverse of transfer cost of BU.A memory hierarchy is not a complete model of computation, but insteadis used to model the movement of data. To study any particular algorithm,reasonable assumptions need to be made about what a \data item" is andwhat operations level 0 can perform on data items. All computations con-sidered in this paper are oblivious, in the sense that there is a �xed orderin which the data items are accessed. If the MH model were to be used toanalyze a non-oblivious computation such as merge sort, then it would benecessary to de�ne carefully operations that control the movement of datathrough the hieararchy.Figures 3(a) and 4 show the MH model of the RS/6000 used in theexperiment of Section 2. For double-precision 
oating-point matrix opera-tions, the basic data item will be an 8-byte doubleword, abbreviated dw.The RS/6000 has 32 
oating-point registers that each hold a doubleword, an8Kdw cache (512 128-byte cachelines), a 128-entry TLB (each entry provid-ing virtual-to-real address mapping for a 512dw-page), 6Mdw (48 megabytes)of real memory, and about 256Mdw of disk storage [BW90, H92]. The diskis modeled, somewhat arbitrarily, as 64K 4Kdw-tracks. Level 0 can performa multiply-add every cycle, and �xed-point and branching instructions arefree15. It takes 8 cycles to load a value that is not in cache into a registerand a total of 14 cycles to bring the cacheline into cache. The time to service15If the data items are in registers and the 2-cycle pipelined multiply-add hardware isused e�ectively, the hardware can perform a 
oating-point multiply-add instruction every40-nanosecond cycle. At the same time, separate �xed-point and branch units (with aseparate instruction cache) do the branching, addressing and register loading needed tosupport the 
oating-point operations. 13



a TLB miss depends somewhat on the state of the translation table datastructure; at minimum 32 cycles are required before the data can begin tomove into cache. The time to service a page miss depends somewhat on thelocation of the disk-head.block- block- aspect packing transferlevel size count latency volume ratio factor costU sU nU lU vU aU pU tU4 Disk 4K 64K { 256M 16 8 {3 Main 512 12K �500K 6M 24 1 �1K2 TLB 512 128 �32 64K 0.25 32 �0.061 Cache 16 512 14 (or 8) 8K 32 16 �0.9 (or 0.5)0 CPU 1 32 1 32 32 64 1Figure 4: RISC System/6000 Model 530 Memory Hierarchy.In addition to giving the primitive parameters, Figure 4 shows some de-rived ones. The name \aspect ratio" comes from viewing MU as a rectangleof height sU and width nU . The packing factor tells how many subblocks arepacked into a block. Notice that, except for level 2, the aspect ratios andpacking factors are moderately small integers16. This would still be true ifthe data item were a byte rather than a doubleword | aspect ratios listed as32 would be 4 instead. The signi�cance of these parameters is twofold. First,the performance of the algorithms we consider is rather insensitive to the ac-tual values of aspect ratios and packing factors, provided they meet certainminimum values17. Second, for the machines we have experience with, theseminimum values are usually met. Consequently, the UMH model de�ned inthe next section assumes these parameters are small integer constants.16The fact that the RS/6000 has a very small a2 aspect ratio correlates with our expe-rience that achieving peak performance on linear algebra kernels was made more di�cultby the relatively small number of TLB entries. Fortunately, the very low transfer cost tothe TLB mitigates its small blockcount.17Experimental evidence [CSB86] can be interpreted to show that for a given volumecache, the minimum cache miss ratio and communication costs occur for aspect ratiosbetween 4 and 16. 14



The story is quite di�erent for the transfer costs tU | the average numberof cycles required to move a data item. There is no consistency among the tU'sat di�erent levels. The transfer cost t2 associated with the TLB is abnormallylow since only the data's addressing information | not the data itself |mustbe processed when a TLB miss occurs. On the other hand, t3 is very largebecause magnetic media are much slower than semiconductor memory. Sincean algorithm's performance is sensitive to these costs, the UMH model isparameterized by a transfer cost function. The in
uence of this function isstudied in depth.4 UMH AnalysisWhile the Memory Hierarchy model is useful for tuning algorithms forparticular machines, it is too baroque for clean algorithm analysis. TheUniform Memory Hierarchy (UMH) model makes simplifying assumptionsthat are representative of typical values. The UMH model assumes thatall levels of the memory hierarchy have the same aspect ratio aU = �, andthat all packing factors pU = �. The transfer costs of buses in a UMHare given by a function f(U). The argument U is a level number, and f(U)is a non-negative number giving the transfer cost in cycles per item of busBU . Formally, the Uniform Memory Hierarchy UMH�;�;f(U) is MH� , where� = hM0;M1; :::i and MU = h�U ; ��U ; �Uf(U)i. We require � to be aninteger greater than 1, and we are generally satisi�ed with programs thatare communication-e�cient for some small integral value for �. Generally,the transfer cost functions f(U) are very simple, for instance 1 (the constantfunction), U (the identity), or �U . A UMH not dissimilar from the RS/6000is shown in Figure 3(b).There are three levels of speci�cation of a computation on a UMH:1. An algorithm. The algorithm speci�es the mathematics of a compu-tation. Execution order and data movement strategies are left un-speci�ed. The algorithms in this paper are described informally, butthey may be formally speci�ed in a concurrent programming notationor as computational circuits, data
ow graphs, or program dependencegraphs [FOW87]. The matrix multiplication solid of Figure 2 is an15



example of an algorithm; there are di�erent algorithms for matrix mul-tiplication that use fewer than O(N3) operations [AHU74].2. A program. A program speci�es the order of evaluation and the datamovement strategy of an algorithm. The process of �nding a programfor an algorithm will be called choreographing the algorithm. The orderof evaluation can be given as a sequentialRAM program, as with NaiveMatrix Multiplication in Program 1. Data movement strategies are of-ten be given implicitly, e.g., as demand fetching with least-recently-usedreplacement. Programs in this paper will be written in a proceduralnotation described below.3. A schedule. Given a particular set of input values to a program, aschedule tells exactly when each block is moved along each bus. Evenif a program is oblivious, the schedule may depend on the alignment ofthe data, that is, where each data item is in relationship to the blockboundaries at each level of the memory hierarchy. It is not necessaryto write a schedule to run a program; rather, the schedule is a trace ofwhat happens when a program runs. Schedules are used in proofs.The programs for our algorithms are speci�ed as one or more proceduresfor each module in the memory hierarchy. Typically, a procedure is calledfrom a procedure one level above and makes a sequence of calls to proceduresone level below. To achieve greater e�ciency, the arguments to a call may bemoved down before the results of a previous call have been moved back up.Each memory module can be viewed as solving a sequence of problems witha three-stage pipeline. In the �rst stage, the inputs to a procedure are moveddown from the level above. In the second stage, the procedure is invoked.This will entail writing subproblems down to (and reading their solutions upfrom) the level below. In the �nal stage, the solution is moved back up tothe next level. Because the second stage uses a di�erent bus, its activity canbe concurrent with that of the �rst and last. Computation, which occurs atM0, is overlapped with communication.A program speci�es, for each bus, the order in which data items movedown the bus and the order in which they move up. The interleaving of thesetwo streams must also be speci�ed. Unless another interleaving is given, weassume that data moves down at the last possible moment that will stillenable it to arrive just-in-time when it is needed at M0, and data moves16



up at the �rst possible free cycle. This strategy prevents a memory modulefrom being 
ooded with more data than it can hold and is consistent withthe pipelining of procedure calls. Our model of computation is given theability to achieve appropriate schedules for such programs18.Problem speci�cation entails de�ning where problem instances are lo-cated. We adopt the convention that N � N input matrices initially resideat level dlog�Ne of a UMH; on an MH they reside at the lowest level inwhich they �t. For a given choice of MH or UMH parameters, the (U)MHcomplexity of a program is the function of the problem size N that gives themaximum running time, taken over all problem instances of size N , of thebest schedule for that instance.Our interest is often not only in the big-O complexity of a program, butin whether it wastes even a constant factor of its RAM speed. Thus, wemake the following de�nition:� The communication e�ciency c(N) of a program is the ratio of theRAM complexity to the UMH complexity19. For the purpose of cal-culating c(N), the RAM complexity of a program is taken to be theMH complexity on a two-level hierarchy with the UMH's M0 moduleand an arbitrarily large M1. Thus, the RAM complexity is the cost ofcomputation and moving data along the B0 bus20.The communication e�ciency of a UMH program is analogous to measure-ments in practice of the fraction of a computer's peak speed sustained byan application. A program is said to be communication-e�cient if c(N)18One approach to implementing such a model would have a controller for each bus toexecute the procedure(s) for the adjoining module. An alternate approach would have anaddressing unit responsible for dispatching transfer requests to each of the buses. It iseasy to verify that such a unit need only dispatch a constant number of transfer requestsper cycle provided the transfer cost is nonincreasing and the packing factor is at least2. In order to extend the model to handle nonoblivious computations, careful attentionwould have to be given to specifying the computational power of the addressing unit orcontrollers.19For a given problem size, the instances with the worst running times on the RAM andon the UMH may be di�erent. We could have chosen to de�ne c(N ) to be the worst ratioover all instances of size N . However, c(N ) would then be unduly biased by instances thatwere particularly easy on a RAM but of average di�culty on a UMH.20In general, when we describe an algorithm, we will also specifyM0 and give B0 enoughbandwidth so that our de�nition of RAM complexity coincides with the usual notion.17



is bounded below by a positive constant. Otherwise, if c(N) gets arbitrar-ily close to zero, the program is communication-bound. An algorithm iscommunication-e�cient if it has a communication-e�cient program; it iscommunication-bound if every program for it is communication-bound.As an example, consider Program 1 for multiplying N � N matricesnaively on UMH16;8;8U , the model chosen in Figure 3(b) to resemble theRS/6000. Given N , let V = blog8(N=16)c. Since N � 16(8V), the blockcountof level V, there is not room in level V to hold an entire row of the A ma-trix plus a block of B. Thus, level V will thrash, that is, a new level-V blockwill be moved in for each multiply-add. Notice that V = blog8(N=16)c >log8(N=16)� 1 = log8(N=128). On UMH16;8;8U , bringing a block into level Vrequires 82V > (N=128)2 cycles. Thus, the complexity of Program 1 onUMH16;8;8U is at least N3(N=128)2 = 2�14N5. This matches our observed10�4N5 performance on the RS/6000 remarkably well. Since the RAM com-plexity of Program 1 is O(N3), the communication e�ciency of Program 1 isO(N�2); it is communication-bound on UMH16;8;8U . However, the standardmatrix multiplication algorithm can be rechoreographed as in Section 6 toyield a communication-e�cient program on this model.Whether or not an algorithmA is communication-e�cient on UMH�;�;f(U)depends on f(U). In many cases it is possible to nicely separate transfer costfunctions for which A is communication-e�cient from those for which it iscommunication-bound. To this end, we de�ne:� Given � and �, a function f(U) is a threshold function for algorithmA if (1) A is communication-e�cient on UMH�;�;f(U), and (2) for anyfunction g(U) such that inf f(U)g(U) = 0, A is communication-bound onUMH�;�;g(U).It is not hard to show that if A is communication-e�cient on a UMH�;�;f(U)and inf f(U)g(U) > 0, then A is communication-e�cient on UMH�;�;g(U). Thus, athreshold function for an algorithm partitions all transfer cost functions intotwo sets | those which support communication-e�cient programs for thealgorithm and those which do not | according to whether inf f(U)g(U) is positiveor 0.A candidate for a threshold function can be constructed to ensure thatthe time required to move the input and results along the bus to the nextsmaller module is bounded by the computation time. To be precise:18



� The candidate threshold function fc(U) for an algorithm A is de�nedas the minimum, over all problem sizes N that reside in level U + 1, ofRAM(N)=Data(N), where RAM(N) is the RAM complexity21 of Aand Data(N) is the maximum number of data items in the input andoutput of instances of size N .The following lemma shows that the candidate threshold function satis�esproperty (2) for a threshold function.lemma 4.1 Let A be an algorithm that depends on all of its input data, andlet fc(U) be the candidate threshold function for A. Suppose g(U) is a functionsuch that inf fc(U)g(U) = 0. Then for any � and �, A will be communication-boundon UMH�;�;g(U).proof: Given any program P for A, we must show that for any � > 0,there exists an N such that RAM(N)=UMH(N) < �, where UMH(N) isthe complexity of P on UMH�;�;g(U).Since inf fc(U)g(U) = 0, we can choose V such that fc(V)g(V) < �. By the def-inition of fc(U), we can �nd N such that instances of size N reside inlevel (V + 1) and fc(V) = RAM(N)Data(N) . On UMH�;�;g(U), just moving theinput and output data items along the topmost bus BV will take at leastg(V)Data(N) on some instance of size N . Thus, UMH(N) � g(V)Data(N),and so 1g(V) � Data(N)UMH(N).We now have � > fc(V)g(V) � RAM(N)Data(N) Data(N)UMH(N) = RAM(N)UMH(N), as required. �It is not a priori clear that A will be communication-e�cient on its candidatethreshold function fc(U). However, this turns out to be the case for thealgorithms considered below.5 Matrix Transposition21Since an algorithm dictates the computations to be performed, ifM0 is speci�ed as inthe previous footnote, then the RAM complexity of any program for A will be the same.Thus, the RAM complexity of an algorithm is well-de�ned.19



Matrix transposition, B := AT, is typical of algorithms that people havetuned to memory hierarchies, improving performance signi�cantly. This sec-tion shows that the constant function 1 is a threshold function for transposi-tion. Transposing square matrices can be choreographed on UMH6;�;1 to becommunication-e�cient, and for nicely aligned matrices, to have asymptoticcommunication e�ciency almost but not quite 1. For transfer cost functionsasymptotically slower than a constant, transpose is communication-bound;its running time is the time to move the data to and from the highest level.The �rst step in analyzing transposition is to specify the algorithm and thedetails of the model that will be considered.The problem considered here will be that of assigning to a matrix B thetranspose of a separate22 matrix A. The matrices are stored in column-majororder. The transpose algorithm23 analyzed here moves each element of A intolevel 0 and moves it back up into the proper position of B.It is natural to let the data item of the UMH model be the individualmatrix entry. Level 0 has whatever abilities it needs to keep track of indices.The transfer cost of bus B0 is one cycle per item. Since each element of Amust move down into level 0 (one cycle) and move back up (a second cycle),the RAM complexity of transposing N � N matrices is 2N2. Since thereare N2 input data items and N2 result data items, the candidate thresholdfunction is the constant function 1. The next subsection shows that it isindeed a threshold function.5.1 A Communication-E�cient Transpose ProgramProgram 2, based on well-known methods, has an asymptotic communi-cation e�ciency on UMH�;�;1 of nearly 1, provided the data are aligned withrespect to block boundaries at all levels of the hierarchy. In the unalignedcase, the program is slower but still communication-e�cient.Theorem 5.1 Suppose that N = �W, that � � 3, and that N � N squarematrices A and B are aligned so that the �rst element of each begins a level-W22The results of this section also hold for transposing a square matrix in place. Thedetails are messier.23There might be faster transpose algorithms that compress data to reduce communi-cation time, or that avoid bringing certain elements into level 0.20



MTU+1 (A[1:n,1:m], B[1:m,1:n]):real value: A; result: B; integer value: n, mfThis procedure resides in module U + 1, and will only be calledwith n � �U+1 and m � �U+1 ginteger: i0, i1, j0, j1for i0 from 1 to n by �Ui1 := min(i0+�U -1, n)for j0 from 1 to m by �Uj1 := min(j0+�U -1, m)MTU ( A[i0:i1, j0:j1], B[j0:j1, i0:i1] )endMT0 (a, b):real value: a; result: bb := aend Program 2: Matrix Transposition.block. Then MTW(A, B) on UMH�;�;1 takes at most (2 + 2=�2)N2 cycles totranspose.proof: We exhibit a schedule and verify that it is valid. Let AW0 be A,and, for U = W � 1;W � 2; :::; 0 and i = 0; :::; �2(W�U) � 1, partition AU+1iinto �2 submatrices, each �U � �U , denoted AUi�2 ; :::;AUi�2+�2�1. Let BUi bethe submatrix of B into which (AUi )T will be copied; AUi and BUi are thearguments to the (i+ 1)-th call to MTU . The schedule is as follows:� AUi moves down bus BU into MU during cycles (2i�1)�2U to 2i�2U�1.It is transmitted by column from left to right. It displaces BUi�2.� The data items of AUi are copied to BUi all the way down at M0 duringcycles 2i�2U to (2i+ 2)�2U � 1.� BUi moves up BU to MU+1 during cycles (2i+2)�2U to (2i+3)�2U� 1.It is transmitted by column from left to right, and it overwrites thesubblocks of MU+1 that held AUi�1.21



To simplify the indices, time runs from cycle ��2W�2, when AW�10 beginsits downward descent into MW�1, to cycle 2�2W+�2W�2� 1, when the lastsubmatrix completes its upward ascent. Thus, the total time is as required.To validate this schedule, we must show the following for each U < W:(1) no submatrix moves down bus BU before it arrives at MU+1; (2) nosubmatrix moves up bus BU before it is complete; (3) at any time, MU isrequired to hold at most three submatrices; and (4) no two transfers on busBU overlap.The �rst submatrix AUi�2 of AU+1i is scheduled to start moving downBU at cycle (2i�2 � 1)�2U , which is before AU+1i has fully arrived at MU+1.However, AUi�2 is a subset of the �rst �U columns of AU+1i . These columns,which start arriving at cycle (2i� 1)�2U+2 and require �U+1 cycles apiece,�nish arriving at cycle (2i�2 � �2 + �)�2U. Since � > 1, AUi�2 is in MU+1before it is scheduled to move down BU . The remaining submatrices ofAU+1i are not scheduled until AU+1i has fully arrived, but well before AU+1i isdisplaced by BU+1i+1 . This veri�es requirement (1); requirement (2) is similar.To verify (3), notice that tra�c on bus BU occurs in epochs of 2�2Ucycles. During epoch i, which goes from cycle 2i�2U to cycle 2(i+1)�2U�1,AUi is transposed into BUi (clobbering AUi�1) by the hierarchy below bus BU .Meanwhile, submatrix BUi�1 moves up bus BU during the �rst half of epochi, and is replaced by AUi+1 during the second half. So, MU need only be bigenough to hold AUi , BUi , and one of BUi�1 and AUi+1. Thus, � = 3 su�ces.Finally, (4) is veri�ed by observing that bus BU is used for the upwardmovement of BUi�1 in the �rst half of epoch i and for the downward move-ment AUi+1 during the second half. A half-epoch is exactly enough time tomove each submatrix. ./If the columns of the matrices are not aligned on block boundaries, Pro-gram 2 will take longer and require bigger modules. There are two sources ofperformance degradation. First, a subblock of data might span a subprob-lem boundary. Such a subblock might have to be moved along the bus tothe next lower level several times. Unfortunately, the most likely situation isthat nearly every subblock at every level above the �rst will span subproblemboundaries. In this case, a column of a subproblem takes up two subblocksinstead of one. If � is 3, thrashing will result and Program 2 will not becommunication-e�cient. If we assume � � 6, then communication-e�ciencyis restored, though the program will run only about half as fast as in thealigned case. 22



A second source of performance degradation is that N may not be a powerof �, resulting in some undersized subproblems. For instance, ifN = �W�1+1,there will be four calls to MTW�1. The degradation due to these extra callsis at most a factor of 4, since transposing a partial block is no slower thantransposing a full block. In fact, the performance is a bit better, as statedin the following theorem.Theorem 5.2 Transposing an N � N matrix stored in level W = dlog�Neby MTW of Program 2 takes time at most 6N2 on UMH�;�;1 with � � 6.proof sketch: Consider the movement of level-U blocks on the bus con-necting level U to level U+1. A block will be moved at most once for each�U � �U subproblem of which it is a part. A level-U block can belong to atmost three subproblems: the beginning of the block might end a columnof one subproblem, the middle can span an entire column of an undersizedsubproblem (one having fewer than the usual �U elements in its columns),and the end can begin a column of a third subproblem. (It follows fromN > �W�1 � �U that there cannot be two adjacent undersized subprob-lems.) Closer analysis reveals that at most half the blocks can span threedistinct subproblems, and the remainder will span at most two24. Thus,each bus will be utilized for at most 5N2 cycles: 2:5N2 for moving blocksof A down, and 2:5N2 for moving blocks of B up. The remaining factor ofN2 is more than su�cient to account for the startup and ending latenciesof the hierarchical data movement. 3Thus, transposing square matrices is communication-e�cient. If we adoptthe convention that M � N matrices reside at level log�(max(M;N)), thenProgram 2 will also be communication-e�cient for non-square matrices.Our proofs reveal that properly sized and aligned matrix transpose willtake time close to 2N2, and otherwise it can take approximately 4N2 or 5N2cycles. This is a large gap. Is there a better program that doesn't havesuch a penalty for awkward matrices? The question is rhetorical; the point24Let b be a level-U block spans a column of an undersized subproblem. If N � 2�U ,each column of the original matrix will contain columns from at least two full lengthsubproblems and (at most) one undersized subproblem. Thus, the blocks before and afterb don't contain columns from undersized problems. On the other hand, if N < 2�U ,then both the initial and �nal elements of b are part of the same subproblem, albeitfrom di�erent columns, except when the �rst elements of b contain the last elements of asubproblem. 23



is, working with the UMH model leads algorithm designers to think aboutcertain issues. These issues are ones that must be addressed by programmerswho want to attain peak performance. A model that exposes the problemshould facilitate �nding a robust and portable solution.We do not wish to imply that our model captures all those issues thathave practical importance. In particular, the limited associativity of somecaches and TLB's may be a large concern. There may also be issues involvedwith getting the addressing code or vector operations performing optimally.Further, the memorymodule sizes and transfer speeds of a particular machinewill di�er from the UMH machine in ways that may a�ect the range ofpossible solutions.5.2 A Limit on Communication E�ciencyThis subsection shows asymptotic communication e�ciency of 1 is not at-tainable on UMH�;�;1 for transpose. There is unavoidable latency in gettingthe operation started up.Theorem 5.3 Suppose that N = �W , that � and � are at least 2, and thatA and B are N �N matrices stored in column-major order at level W of thememory hierarchy and are aligned so that the �rst element of each beginsa level-W block. Any program that choreographs the transpose algorithm onUMH�;�;1 requires at least (2 + c)N2 cycles, where c = 1=(6�4�).proof: A block at some arbitrary level V < W of the result matrix B,being a partial column of B, contains elements from �V di�erent columns,and hence blocks, of A. We will argue that before �V subblocks of A havebeen transferred down out of the top level (level W), there's not much usefulcommunication to be done on the bus BV . Speci�cally, there aren't yet anycomplete blocks of B to be moved up, and there's not enough room atand below level V to hold much data that is moved down. To show that aconstant fraction of the RAM time is wasted, we will focus on a carefullychosen level V that is a few levels down from the top of the hierarchy. Thedetails follow.Let d be the unique integer such that �d�1 � 2� < �d. Let V =W � (d+ 2). There are two facts we will need to pull out of a hat later:24



1. �W�1�V � N2=(2�4�). This is derived as follows:N2 = �2W = (�W�1�)(�V�d+2) = �W�1�V�4�d�1 � �W�1�V�42�:Dividing both sides by 2�4� gives the desired inequality.2. 43�2V� < N2=(3�4�). This is derived as follows:N2 = �2W = �2V�2d+4 = �2V�4�2d > �2V�44�2:Dividing both sides by 3�4� gives the desired inequality.The result matrix B is partitioned into �W+d+2 level-V blocks. Eachlevel-V block of B contains elements from �V di�erent columns of A, andhence from �V di�erent level-(W � 1) blocks of A (since each column of Ais a distinct level W-block). Consider the state of the computation justbefore timestep �W�1�V. At most �V � 1 di�erent columns of A can havebeen involved in the computation so far, since moving a subblock downfrom level W takes �W�1 timesteps. Thus, no level-V blocks of B have beencompletely �lled in with their �nal values. Consequently, in the remainingtime, every level-V block of B must be moved up BV+1. Further, almostall of the A matrix must be moved down that same bus. Only the z dataitems that are currently stored at level V or below are excepted, wherez = PVU=0 ��2U = ��2V+2�1�2�1 < � �2�2�1�2V � 43��2V such items. Thus,the total time T required to compute B is at least �W�1�V (the currenttimestep) plus N2� z (to move the remaining data down into level V) plusN2 (to move all the complete blocks up). Substituting for z, we obtainT > 2N2 + �W�1�V � 43��2V. By the two magic formulae given earlier,T > 2N2 +N2=(2�4�)�N2=(3�4�) = (2 + 1=(6�4�))N2. |If � is su�ciently large, then contrary to our convention, the matricesmight �t in a level lower than level W. The techniques of this proof can beadapted to show that even if the matrices are stored in the lowest level intowhich they �t, asymptotic communication e�ciency of 1 cannot be achieved.Furthermore, if we hold the transfer cost of B0 at 1 (so the RAM -complexityremains the same) but reduce all other transfer costs by a constant factor,the communication-e�ciency of a transpose program will improve slightly butstill be less than 1. The startup latency of transpose can only be eliminatedby making the transfer cost function be asymptotically zero.25



5.3 Rational permutationsMatrix transposition is an instance of a more general class of permuta-tions, the rational permutations of Aggarwal, Chandra and Snir [ACS87]. LetN = 2n and I = f0; 1; :::; N�1g. For each i in I, let [in�1; :::; i0] be the binaryexpansion of i. Suppose � is a permutation on hn�1; :::; 0i. Then � induces apermutation R� on I de�ned by R�([in�1; :::; i0]) = [i�(n�1); :::; i�(0)]. Finally,if A and B are arrays over the index set I, then we say that B is obtained fromA via the rational permutation R� if for all i in I, A(i) = B(R�(i)). A pro-gram that given A produces B is said to implement the rational permutationinduced by �.For example, if n is even and �(i) = i + n=2 (mod n), then the arrayobtained from a pN � pN matrix via the rational permutation R� is thetranspose of A. Another example, which will be used in Section 7, is thebit-reversal permutation induced by �(i) = (n� 1)� i.Theorem 5.4 Given N = 2n, � � 6, � a permutation on hn� 1; :::; 0i, andN-element arrays A and B residing at level dlog�2 Ne, the rational permuta-tion R� taking A into B can be performed in at most 6N cycles on UMH�;�;1.proof sketch: The techniques of the transpose algorithm are adaptedto perform the rational permutation. Speci�cally, at an arbitrary levelV > 0, a rational permutation problem on �2V elements is decomposed intoa sequence of rational permutation subproblems on �2(V�1) elements, andthe subproblems are passed down to level V-1. In the nicely aligned case,the decomposition can be done so that each subproblem and solution �tinto exactly �V�1 subblocks. In the unaligned case, a constant multiplemore blocks may be required.We will describe the decomposition for the aligned case; the unalignedcase uses the same decomposition, but the data may span more subblocks.In the aligned case, � is a power of two and each level-V subblock holds datafrom A or B whose indices di�er only on the least signi�cant k = (V�1) lg �bits. Let TV = f0; 1; :::; k� 1g [ f�(0); �(1); :::; �(k� 1)g. We de�ne a TV-set to be a maximal subset of the index set I whose elements di�er only inbit positions in TV. TV has between k and 2k distinct elements, dependingon �, and so a TV-set has at most 22k elements. Let S be a subset of Aindexed by a TV-set. Since TV includes the low-order k bits and A is aligned,26



any level-V subblock that contains one element of S must lie entirely in S.Similarly, since TV includes �(0); �(1); :::; �(k � 1), R�(S) completely �llsup any subblock that it intersects. Furthermore, every TV-set is the unionof a collection of TV�1-sets, so problems can be recursively decomposed intosubproblems. Thus, a TV-set plays the same role for a rational permutationthat a square submatrix plays in the transpose program. The fact that aTV-set may be smaller than �2V�1 elements is not a concern | several TV-sets can be bundled together to form a subproblem of size �2(V�1) elements.The remaining details are essentially the same as for transposition. }A generalization of the class of rational permutations (also called \bitpermute" permutations) is the class of bit permute with complement permu-tations [C92]. Under such a permutation, the i-th input element is permutedto an address determined by rearranging the bits of i and exclusive-oringthe result with some constant c. Techniques of the previous proof can beadapted to achieve a communication e�cient bit permute with complementpermutation on UMH�;�;1.6 Matrix MultiplicationThe O(N3) standard matrix multiplication algorithm depicted in Figure 2is basic to many scienti�c subroutine libraries, such as ESSL [IBM86] andLAPACK [ABetc92]. This section shows that �U=4 is a threshold functionfor this algorithm. Thus, communication-e�cient implementations exist ifand only if the transfer costs are no more than a constant higher than �U=4.It also shows, as with matrix transposition, that a communication e�ciencyof 1 cannot quite be achieved with such transfer cost functions.6.1 Communication-E�cient Matrix MultiplicationThe candidate threshold function for multiplication of N � N matricesis approximately25 �U=4 because three input matrices must travel down, and25The smallest problem that resides in level U+1 has N = �U + 1. The candidatethreshold function fc(U) is exactly (�U+1)3 cycles for a size N instance divided by 4(�U+1)2data items in the instance. This equals (�U + 1)=4 cycles per item.27



MMU+1(A[1:n,1:l], B[1:l,1:m], C[1:n,1:m]):real value: A, B; value result: Cinteger value: n, m, linteger: i0, i1, j0, j1, k0, k1for i0 from 1 to n by �Ui1 := min(i0+�U -1, n)for j0 from 1 to m by �Uj1 := min(j0+�U -1, m)for k0 from 1 to l by �Uk1 := min(k0+�U -1, l)MMU ( A[i0:i1, k0:k1], B[k0:k1, j0:j1], C[i0:i1, j0:j1] )endMM0 (a, b, c):real value: a, b; value result: cc := c + abend Program 3: Matrix Multiplication.one result matrix must travel up, the topmost bus in the N3 time it takes ona RAM . This subsection presents a program for standard matrix multiplica-tion with O(N3) running time on UMH6;�;�U =4. That, together with lemma4.1, shows that �U=4 is a threshold function.Program 3, based on techniques going back at least thirty years [RR51],recursively dices the matrix multiplication solid of Section 2 so as be com-munication e�cient on UMH6;�;�U =4.Theorem 6.1 Suppose that N = �W and that N �N matrices A, B, and Care aligned so that the �rst element of each begins a level-W block. Then forany � � 6, MMW (A,B,C) on UMH6;�;�U=4 updates C by the product of A andB with communication e�ciency 11+1=�3 .proof: As with the proof of Theorem 5.1, we exhibit a schedule andverify its validity. Let PW0 be the given problem C := C + A B. Program 328



recursively decomposes problem P U+1i into �3 subproblems denoted P Ui�3 toP Ui�3+�3�1. The schedule follows:� Problem P Ui moves down BU into MU during cycles (i � 34)�3U toi�3U � 1. The appropriate submatrix of A is transmitted by columnfrom left to right followed by the submatrices for B, and then C. Inthe case of U = 0, this means that one item will be moved up andthree down B0 every cycle.� Module M0 performs the multiplications for problem P Ui during cyclesi�3U to (i+ 1)�3U � 1.� The resulting submatrix of C for problem P Ui moves up BU to MU+1during cycles (i+ 1)�3U to (i+ 54)�3U � 1.Time runs from cycle �34�3W�3, when problem PW�10 begins its down-ward descent into MW�1, to cycle �3W + 14�3W�3 � 1 when the result ofproblem PW�1�3�1 completes its upward accent. Thus, the total time is asrequired. It is easy to verify that no bus is scheduled for more than onetransfer at a time, and that the most 2 problems are resident in a moduleat any one time and hence � = 6 su�ces.In order to verify that there is enough time to move down the data forproblem P Ui , notice that P Ui consists of three �U � �U submatrices. Sincethe data is nicely aligned, it comprises 3�U level-U blocks. Blocks on bus BUtake �U=4 cycles per item and each block contains �U items. Thus, movingthe problem down takes 34�3U cycles. Similarly, the results of problem P Uitravel up BU in the allotted time.Finally, we must show that data is available at the speci�ed modulewhen it is scheduled to be moved. The �rst subproblem P U�1i�3 of prob-lem P Ui begins its descent 34�3U�3 cycles before P Ui has �nished arriving atlevel U . However, this descent begins after all of the A and B submatricesand more than half of the C submatrix have arrived. Thus, a competesubproblem is available. The subsequent subproblems all overlap the mul-tiplications of P Ui . The upward movement of results of the subproblemsproceeds analogously. ~Program 3 will be communication e�cient on unaligned square matrices.However, this may require � = 12 (since submatrices may take up twice asmany blocks) and the communication e�ciency drops, but by a factor of lessthan 16 (since twice as many blocks are sent per subproblem and 78-ths ofthe top-level subproblems may be almost empty).29



6.2 A Limit on Communication E�ciencyThe following theorem shows that the UMH complexity any programimplementing standard matrix multiplication is bigger than the RAM com-plexity by an additiveO(N3) startup latency even if the transfer cost functionis an arbitrary constant factor faster that the candidate function.Theorem 6.2 Suppose N = �W and A, B, and C are N �N matrices storedin column-major order at level W of the memory hierarchy and are aligned sothat the �rst element of each begins a level-W block. For any c > 0 and any�, matrix multiplication, C := C + A B, on UMH�;�;c�U has communication-e�ciency at most 11+3c2=4�3 .proof: The transfer cost tW�1 on the topmost bus is cN=� cycles per item.Bringing down a subblock, which contains N=� data items, takes cN2=�2cycles. It takes c2N3=�3 cycles to move the �rst cN=� subblocks down fromthe top level. Suppose these subblocks come from a columns of A and bcolumns of B. Each of these aN=� element of the A matrix are multipliedby at most 1 element from each of the b blocks of B since B is in column-major order. Thus, at most abN=� multiplications are possible using thisdata. This expression is maximized when a = b = cN=2�. Therefore, atmost c2N3=4�3 multiplications can be performed in the �rst c2N3=�3 cycles.Thus, the entire computation requires at least N3 + 3c2N3=4�3 cycles onthe UMH , while taking only N3 cycles on the corresponding RAM . �Notice that the proof holds for the nonupdate form of matrix multiplica-tion (C := AB). However, it would not go through if B were in row majororder. This suggests that it might be possible to compute C := ABT withcommunication e�ciency 1.7 Fast Fourier TransformsThis section builds on the techniques of previous sections to address asigni�cantly more intricate problem. The forward Discrete Fourier Trans-form (DFT) of a vector x of N complex numbers called points is the vector30



y of N complex numbers, de�ned byyp = N�1Xq=0 !pqN xq (0 � p < N);where !N is the N -th root of unity, e�2�i=N . A Fast Fourier Transform(FFT) is a technique for e�ciently computing a DFT [V-L92]. Many FFTalgorithms make logN passes through the data. On UMH�;�;cU , the modelof interest, such techniques require moving 
(N logN) data items on thetopmost bus, which takes 
(N log2N) time. Thus, these algorithms arecommunication-bound.Alternatively, if N = K1K2, there is a N -point FFT algorithm that con-sists of K2 independent FFT's on K1 points, multiplication of the intermedi-ate results by powers of !N a�ectionately called twiddle factors, and then K1independent FFT's on K2 points. An FFT algorithm with RAM complexityO(N logN) results from recursively choosing K1 and K2 within a constantfactor of each other. Further, it requires only O(N) data movement on thetopmost bus of a UMH. This algorithm is therefore appropriate for oursearch for a communication-e�cient program.This section will establish that the identity function (in fact, any linearfunction) is a threshold function for this FFT algorithm. After the standard\Four-Step" program [B90] is shown to be communication-bound for anylinear transfer cost function, it will be rechoreographed to be communication-e�cient. To simplify presentation, we will only consider the case whereN = 22r for some integer r, where at each stage of the recursion K1 = K2down to K1 = K2 = 2, and where � = 2. To clarify explanations, we willleave � in symbolic form where possible.The Four-Step FFT program performs the following steps, treating itsinput as a pN �pN matrix stored in column-major order:1. perform a pN -point FFT on each row.2. multiply the entry in the jth row and kth column by e�2�ijk=N .3. transpose the matrix.4. perform a pN -point FFT on each row.31



This algorithm takes O(N logN) time on a RAM .The input to a problem of size N is assumed to reside in level dlog�2 Ne ona UMH. Since movingO(N) data down the topmost bus in a communication-e�cient program can take at most O(N logN) time, the candidate thresholdfunction fc(dlog�2 Ne�1) is O(logN). Therefore, fc(U) is O(U). However, thenext theorem shows that the Four-Step program is communication-bound atthe candidate function.Theorem 7.1 For any c > 0, any �, and any � � 2, the communicatione�ciency of the Four-Step program on UMH�;�;cU is O( 1log logN ).proof: The running times of step 2, Ts(N), and of step 3, Tt(N), are atleast the cost of moving the data up into the lowest level V into which all thedata �t. This level will be some constant k levels below level W = dlog�2 Ne,where k depends on �. Thus, the cost of moving the N data items isNc(W � 1 � k) � cN(log�2 N � 1 � k). This shows Tt(N) and Ts(N)are 
(N logN). Hence we obtain the following recurrence for Tfs(N), theUMH complexity of Four-Step program:Tfs(N) � 2pN Tfs(pN) + Ts(N) + Tt(N)� 2pN Tfs(pN) + 
(N logN):This recurrence implies that Tfs(N) is 
(N logN log logN). The resultfollows immediately. 4The remainder of this section shows how to rechoreograph the Four-Stepprogram to be communication-e�cient on a UMH whose transfer cost func-tion is the identity function. Since the candidate threshold function is O(U),this theorem, together with lemma 4.1, con�rms that the identity functionis indeed a threshold function.Theorem 7.2 There is communication-e�cient program for the Fast FourierTransform on N = 22r points aligned at a block boundary at level W (W =2r�1) on UMH�;2;U for any � � 7.proof: In this proof, we will de�ne the bit-reversed FFT (BRFFT), whichcan be obtained without recursive transposes. Since the bit-reversal permu-tation is its own inverse, an FFT is obtained from the BRFFT by applyinga bit-reversal. Although this permutation is O(N logN), it is not done32



recursively and so only a�ects the running time by a factor of at most 2(instead of log logN). Next, multiplying by twiddle factors is examined.This step is combined with the beginning of the subsequent BRFFT step.Finally, a recursive decomposition of BRFFT in which subproblems �ll upentire subblocks is described.The BRFFT is the FFT followed by a bit-reversal permutation BR, oneof the rational permutations described in Section 5.5. The permutation BRapplied to a vector can be formed by treating the data as a matrix, trans-posing the matrix (which swaps the high-order bits with the low-order onesin the vector's addresses), applying a BR to each row of the matrix (whichreverses the order of the high-order address bits), and �nally applying BRto each column (reversing the lower-order bits). Thus, the BRFFT couldbe computed by a \Seven-Step" program, namely (1) FFT each row, (2)scale (i.e., multiply by the twiddle factors), (3) transpose, (4) FFT eachrow, (5) transpose, (6) BR each row, (7) BR each column. However, steps(3) through (5) can be replaced the single step, (3-5) FFT each column.Next, step (6) can be moved ahead of step (3-5), since the columns re-main identical (although arranged in a permuted order) when the rows areeach bit-reversed. Finally, step (6) can be further moved to be before step(2), assuming the twiddle factors are suitably permuted. Thus, we have a\Five-Step" program for BRFFT, (1) FFT each row (6) BR each row, (2)scale, (3-5) FFT each column (7) BR each column. Now notice that the�rst two steps are simply a set of BRFFT's, as are the last two. This yieldsa \Three-Step" BRFFT program, namely (a) BRFFT each row, (b) scaleby twiddle factors, and (c) BRFFT each column.The next re�nement will combine the scaling step (b) with the BRFFT'sby making use of three subroutines at all levels U for which U is a power of2. � FullU(A; S) | Given A and S, arrays of �2U complex numbers at level U,multiply each element of A by the corresponding element of S and thenperform a BRFFT on A. FullU(A; S) is implemented as RowsU(A; S)followed by ColumnsU(A;TU), where TU is the set of twiddle factorsneeded for a BRFFT on �2U points.� RowsU(A; S) | Treating A and S as two-dimensional �U��U matrices,execute FullU=2(A[i; 1 : �U ]; S[i; 1 : �U ]) for each i from 1 to �U , that is,perform a scaled BRFFT on each row.� ColumnsU(A; S) | Treating A and S as two-dimensional �U � �U ma-33



trices, execute FullU=2(A[1 : �U ; j]; S[1 : �U ; j]) for each j from 1 to �U ,that is, perform a scaled BRFFT on each column.Performing BRFFT on an array A of N = 22r points is now simply a matterof calling FullW (A,J), where J is the all-1 matrix and W = 2r�1.Notice that no data is transferred between levels in order for FullU tocall RowsU or ColumnsU. When ColumnsU in turn calls FullU=2, it passesdown one complete block of A and one of S. This data reaches level U=2 assquare matrices of �U=2 level-(U=2) blocks. A sequence of such calls can bescheduled using the now-familiar pipeline technique. On the other hand,RowsU cannot call FullU=2 without reformatting its data, since each call onFullU=2 gets one point from each of �U level-U blocks. To repack this datainto �U=2 level-(U=2) blocks would require moving it down all the way toM0.Rather than repacking the data, we will rechoreograph RowsU to avoidthe problem. First, we expand the call to FullU=2 and its calls to RowsU=2and ColumnsU=2 inline, obtaining:for i from 1 to �Ufor j from 1 to �U=2FullU=4(A[i,j,1:�U=2], S[i,j,1:�U=2])for j from 1 to �U=2FullU=4(A[i,1:�U=2,j], TU=2[1:�U=2,j])In the above, A and S are treated as �U � �U=2 � �U=2 arrays. Next, wedistribute the outer loop across the two inner loops and interchange theloop order of both nested loops. It can be veri�ed that these programtransformations do not change the semantics of the program. The result is:for j from 1 to �U=2for i from 1 to �UFullU=4(A[i,j,1:�U=2], S[i,j,1:�U=2])for j from 1 to �U=2for i from 1 to �UFullU=4(A[i,1:�U=2,j], TU=2[1:�U=2,j])Now block (stripmine) each inner loops into two nested loops, and treat Aand S as �U=2 � �U=2 � �U=2 � �U=2 arrays, yielding:34



for j from 1 to �U=2for i2 from 1 to �U=2for i1 from 1 to �U=2FullU=4(A[i1,i2,j,1:�U=2], S[i1,i2,j,1:�U=2])for j from 1 to �U=2for i2 from 1 to �U=2for i1 from 1 to �U=2FullU=4(A[i1,i2,1:�U=2,j], TU=2[1:�U=2,j])Finally, the two innermost loops can now be written as calls to RowsU=2 asfollows: for j from 1 to �U=2for i2 from 1 to �U=2RowsU=2(A[1:�U=2,i2,j,1:�U=2], S[1:�U=2,i2,j,1:�U=2])for j from 1 to �U=2for i2 from 1 to �U=2RowsU=2(A[1:�U=2,i2,1:�U=2,j], TU=2[1:�U=2,j]R)where the superscript R indicates that the vector TU=2[1:�U=2,j] is to berepeated �U=2 times.The arguments of the calls to RowsU=2 are subarrays comprising �U=2level-(U=2) blocks. Furthermore, the innermost loops for RowsU (the loopsindexed by i2) make a sequence of calls to RowsU=2 using data that is ar-ranged sequentially in level-U blocks. To start up this sequence of calls,we need only move down one subblocks from each of 2�U=2 level U blocks,then one subsubblock of each of these, and so on, until the data for the�rst call reaches level U=2. Thereafter, additional subproblems can bepipelined down (and the results moved up) at a rate of one subproblemevery 3�U(U � 1) cycles, the time to move 3�U data items along the slowestbus (the one just below level U).Choose constant c � 3 su�ciently large so that the base cases Rows1 andColumns1 can be executed in cN lgN cycles (where N = �2 = 4). We willshow by induction that a call to RowsU onN = �2U data points, where U is apower of 2, requires cN lgN cycles in M0. RowsU entails a sequence of 2N 12calls to RowsU=2. By the above discussion, the data can be choreographedto arrive at level U=2 at a rate of up to one problem every 3�U(U � 1) <c(N 12 ) lg(N 12 ) cycles. Making the inductive assumption that each call to35



RowsU=2 requires c(N 12 ) lg(N 12 ) cycles at M0, we see that executing RowsUrequires 2N 12 c(N 12 ) lg(N 12 ) = cN lgN cycles in M0. Another inductionshows that ColumnsU takes cN lgN cycles and FullU takes 2cN lgN cyclesin M0. Using the pipeline techniques of earlier proofs, once problems startarriving at M0, it remains active until the computation is complete.Finally, we argue that the startup latency is quite small. An O(N 12 logN)preprocessing step brings all the twiddle factors to the appropriate levels(TU goes to level U). The time to bring the �rst data items to M0 | es-sentially the time to move N 12 blocks down the topmost bus plus the timeto move one block down each subsequent bus | is O(N 34 logN). rIt is not at all clear this program would be competitive on real computers.Some authors [GJ87, B90] try to avoid bit-reversal permutations like theplague; in practice, a single transpose is more e�cient than a bit-reversal.The penalty of recursive transposes is not large | O(log logN). Bailey [B90]reports good results for the Four-Step program for N from 28 to 220 on Craysupercomputers26. For problems of this size it is not necessary to invoke thetranspose recursively; simultaneous FFTs of the rows are performed by theCray library routine.It is probably possible to improve upon the communication-e�ciency ofthe program developed above. One line of improvement would try to reducethe cost of moving the twiddle factors. Another would return to the Four-Step program and try to incorporate the recursive transposes into the FFTsteps.8 Related WorkThe UMH model is not the �rst to attempt to capture the cost ofmoving data within the memory hierarchy. Numerous papers (for exam-ple [F72, HK81, AV88, LTT89]) consider a two-level memory hierarchy. Thefact that the UMH model has more than two levels has several consequences.First, it is more natural for asymptotic analysis of algorithms, since a single26Carlson [C90a] reports improvement obtained by carefully exploiting the local memoryattached to each processor of the Cray-2. Section 9 discusses modeling such computers.36



machine can handle problems of all sizes. More signi�cantly, the UMH fo-cuses attention on the intermediate levels of storage. Thus, it raises questionssuch as what \shape" subproblems are suitable for further subdividing, andhow should the reception of a problem be coordinated with the dispatchingof subproblems.The models of Vitter and Shriver [VS90] focus on an orthogonal aspectof some memories | particularly disk storage | that simultaneous datatransfers may be possible between separate memory modules and a singlelower module. It might be possible to incorporate this feature into the UMHmodel.Our work is closely related to, and heavily in
uenced by, the Hierar-chical Memory Model (HMM) [AACS87] and the Block Transfer model(BT ) [ACS87], both of which have multiple levels. This section exploresthe relationship between the UMH model and the HMM and BT models.Each model is a family of machines parameterized by some function thatdetermines the cost of accessing data. An HMMf(x) is a RAM machine thatis charged f(a) to reference the a-th location in memory. A BTf(x) is chargedf(a) to access address a but a block of length l ending at a may be moved atcost f(a) + l. Very roughly, the cost of touching each element in a block oflength l ending at address a can be approximated as lf(a) on an HMMf(x),as max(l; f(a)) on a BTf(x), and as max(l;pa)f(log�2 a) on a UMH�;�;f(x)27.Figure 5 directly compares access costs of di�erent size blocks in variousUMH, HMM , and BT models. High-bandwidth (low transfer cost) modelsUMH1;2;U , HMMlogx, and BTpx are shown on the left while low-bandwidthmodels UMH1;2;�U , HMMpx, and BTx1:5 are on the right28. We chose tocompare these models because they are, in some sense, \threshold models"for FFT (on the left) and matrix multiplication (on the right). Substantiallymore points have been plotted for the UMH's to convey a sense of the discon-27Addresses are assigned to the locations in a UMH linearly from the lowest moduleM0 up. Comparing the UMH to these models is complicated by the fact that the transfercost is a function of level number rather than address. It can be shown that the transfercost of moving a value at address a down one level on a UMH�;�;f(U) is bounded betweenf(log�2 a� � 1) and f(log�2 a� + 1) cycles per item provided f(x) is monotonic and a is notvery small. Thus in this case, it is legitimate to compare apples (access cost functions ofthe HMM and BT models) and oranges (transfer cost functions of the UMH model).28Cost for another high bandwidth model, the unit bandwidth UMH of Section 5, couldhave been plotted on the left as well. The values for this model would lie below the valuesfor the UMH1;2;U by a small amount. 37
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tinuities associated with crossing level boundries. The top graphs comparethe cost of accessing a single data item at address a. The middle graphscompare the cost of accessing pa items beginning at address a. And, thebottom graphs compare the costs of accessing a items beginning at addressa. These graphs show how similar the compared models really are whenblock sizes are large. TheHMMlogx probably underestimates, and the BTx1:5undoubtably overestimates, the cost of accessing a single data item. (Afterall, you can't bring a bit in from disk without bringing a page into mainmemory, but only a single page containing the bit gets brought in.) Thereare also more subtle, but signi�cant, di�erences between the models. TheHMM model provides no incentive for spacial locality whatsoever. TheHMM and BT models allow only one transfer at a time, while the UMHmodel allows separate blocks to be transfered simultaneously on di�erentbuses. The BT model is more 
exible with respect to the sizes of blocksto be transfered. Latency in the BT model and transfer cost in the UMHmodel play complementary roles; each models both the latency and band-width of a real computer with one (functional) parameter. The UMH modelis more 
exible with respect to bandwidth (su�ciently large blocks alwayshave nearly unit bandwidth on the BT model).The larger the communication cost function is on any model, the largerthe complexity of an algorithm. For very large cost functions, the complexityis usually dominated by the time to touch all the input values. For the lowestcommunication cost functions, the complexity of the algorithm studied is alinear or nearly linear function of the RAM time. In between, there arecommunication cost functions for which the computation and communicationare roughly in balance; this is the case for the threshold functions on theUMH. Similar cusps occur for the HMM and BT models. The HMM orBT complexities at the cusp are a factor of logN or log logN greater thaneither the time to touch the input or the computation time. In the UMH,this factor is only a constant. This di�erence is primarily due to the abilityof a UMH to use its buses simultaneously.Transpose requires very low communication costs to approach the RAMcomplexity. Transposing a N�N matrix takes �(N2) time on a UMH�; �;1model. It takes �(N2 log logN) time in the BTpx model [ACS87], and39



�(N2 logN) time in the HMMlog x model29 [AACS87]. The BTpx achievesits bound by moving each data item O(log logN) time at constant cost peritem. In contrast, the UMH�;�;1 moves each data item twice on each oflog�2 N buses. It achieves its bound by overlapping these transfers. Whether�(N2) or �(N2 log logN) is a more realistic complexity for transpose proba-bly depends on whether data movement on the di�erent buses of the machinein question can be overlapped e�ectively.Matrix multiplication has a high computation-to-data ratio. All threemodels achieve �(N3) even with high communication costs; all three useessentially the same order of computation to do so. The UMH and HMMprograms use similar data movement strategies. The BT model achieves�(N3) even on machines with extremely high access costs by using a some-what unnatural data movement strategy. When decomposing a problem ofsize N into subproblems, the natural unit of transfer is the column lengthof the subproblem | O(N). The BT program transfers data in units thatare much larger | O(N2= log logN) | in order to take advantage of itsunit bandwidth assumption. In our experience, the strategy of the UMHand HMM programs is closer to that used to achieve high performance inpractice.Essentially the same Four-Step FFT program is analyzed in each model.This program has a �(N logN log logN) running-time on both the UMH�;4;Uand theHMMlog x models. It has complexity�(N logN) on theBTpx model.For the HMM and BT models, these complexities are optimal; hence, thereis no motivation to �nd a better program. However, in the UMH model, theprogram can be rechoreographed to achieve an asymptotic speedup.9 ParallelismThis section generalizes the MH and UMH models to handle parallelismand establishes threshold functions for matrix multiplication on a range ofprocessors. A module of the Parallel Memory Hierarchy (PMH) model canbe connected to more than one module at the level beneath it in the hierarchy,29Floyd's two-level memory model [F72] also requires �(N2 logN ) time because thelower level of this model only holds a constant number (3) of size N blocks.40



giving rise to a tree of modules with processors at the leaves30.A vast collection of di�erent architectures for machines with more thanone processor currently exists. The memory and communication structureof such parallel and distributed machines can often be modelled with a treestructure. For instance, the root module can represent the global memoryshared by a collection of processors, and smaller modules attached below itcan represent the local caches of the individual processors. The non-uniformcommunication costs of various interconnection topologies can be modelled,though somewhat roughly, by using several levels of a PMH. For instance,a mesh of 64 processors could be represented by a root module (representingthe total semiconductor memory of the machine) with four child modules(one for each quadrant of the mesh), each parenting 4 subquadrant modules,each of which has 4 processor modules as leaves. Further study is needed todetermine how to choose blocksizes and latencies to best re
ect the actualcommunication capabilities of the mesh.Di�erent classes of architectures are distinguished by how much branchingthere is at each level. This is illustrated in Figure 6. The left-hand �gure wasdrawn31 using parameters representative of traditional supercomputers, suchas Cray's C90, Fujitsu's VP2600, and NEC's SX-3. Such machines have theirbranching near the leaves of the memory hierarchy tree. The middle �gureis representative of scalable multicomputers and multiprocessors that havetheir semiconductor memory physically partitioned among the processors.Such machines, which include Kendall Square Research's KSR 1, ThinkingMachine's CM5, and hypercube machines, have their branching in the middleof the memory hierarchy. The �nal �gure of a cluster of workstations showsbranching near the root. Thus, the \high-end" versus \low-end" spectrum isre
ected by the location of branching in the PMH model.To complete a PMH model, one must specify the communication modebetween a module and its children. Clearly, the items being communicated30A related extension allows multiple modules to be attached above a module. Thiscorresponds to a system with a single processor and a tree of memory modules growingout of it. This has proved a useful tool for analyzing the behavior of multiple disks [VS90],and might also be useful in understanding multiple banks of semiconductor memory.31As before, the dimensions of the rectangles are the logarithms of the blockcount andblocksize. Additionally, the number P of modules at a given level is depicted by 1+ lg(P )rectangles. Thus, for instance, the middle �gure represents 256 processors arranged in 8clusters. 41
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will be subblocks of the parent (or, equivalently, blocks of the children). Onemight postulate a single logical bus connecting parent with children and alloweither point-to-point or broadcast communication on it. We do not explorethis alternative. The other alternative (a distinct bus connects each child tothe parent) can be further re�ned based on the kind of simultaneous accesspermitted to a given location of a subblock in the parent. CRCW (Concur-rent Read, Concurrent Write), CREW (\E" representing \Exclusive"), andEREW are possibilities. The results of this section hold for all three choices.A Uniform Parallel Memory Hierarchy, UPMH�;�;f(U);� , is a PMH form-ing a uniform � -ary tree of h�U ; ��U ; �Uf(U)imemorymodules32. The commu-nication e�ciency of a UPMH program is the ratio of its PRAM complexityto its UPMH complexity.Theorem 9.1 If there is a communication-e�cient program for multiplyingN�N matrices at level W = dlog�Ne on UPMH�;�;f(U);� with �W processors,then f(U) is O(( �� )U).proof: The PRAM time for matrix multiplication is N3�W . The UPMHtime of a communication-e�cient program can be at most c times largerfor some constant c > 0. Consider the communication cost. Since all ofeach input matrix is used in the computation, there must be some bus outof the root that has at least N2� data items pass over it. Therefore, the itemtransfer time of this bus is at most cN3�W =N2� = cN�W�1 = c�( �� )W cycles. pA corollary follows from observing that if � < � , then ( �� )U approaches 0asymptotically.Corollary 9.2 On a UPMH�;�;c;� with constant transfer cost c and with� < � (i.e., with more than N processors), multiplication of N �N matriceswill be communication-bound.The following theorem shows that a program closely related to one de-scribed by Valiant [V90] achieves communication-e�ciency for transfer costfunctions not proscribed by the theorem above.32The uniform parallel model is not realistic of today's computers. Typically, these havebranching at only a few levels, and the sizes of the modules and the transfer costs are farfrom uniform. 43



Theorem 9.3 Multiplication of nicely aligned �W��W matrices at level W ofUPMH9;�;( �� )U=4;� can be computed with communication e�ciency 1=(1 + 2��3 )for 1 � � � �2 provided � divides �2 evenly.proof: The goal is to use �W processors and (1 + 2��3 )�3W=�W cycles toperform C = C + AB. Each processor will compute (�2� )W values of C.As with the sequential multiplication program of Section 6.1, a problemin a module is partitioned into �3 subproblems, each being a �W�1 � �W�1subcube of the Matrix Multiplication Solid of Figure 2. Each subproblem istransferred down one level and further partitioned into �3 subsubproblems,and so on. In the parallel case, �3� subproblems are pipelined through eachof the � buses to smaller modules. Since � divides �2, each bus handles amultiple of � subproblems, and so the � subcubes with a given submatrixof the result matrix C can all be handled by same module one level down.Time on a level U bus is partitioned into epochs. The duration of anepoch is the time required to perform all the multiply-adds of a level Uproblem | (�3� )U cycles. During the �rst three quarters of an epoch, theinput to a level U problem (submatrices of A, B, and C) travel down thebus; during the �nal quarter the solution to a previous problem moves up.Notice that the time to transfer a �U ��U matrix on a level U bus is exactly(�3� )U=4, that is, one-quarter epoch.The schedule of Theorem 6.1 is very aggressive; a problem occupies amodule for only two epochs, necessitating that a subproblem be dispatchedbefore the problem has fully arrived. A less aggressive schedule is easier to�nd in the parallel case. The �rst � subproblems of the problem P arrivingat level U in epoch i are dispatched at the beginning of the fourth quarterof i (immediately after the entire problem has been received). Inductively,it can be shown that processing P after it arrives at level U requires a fulllevel U epoch plus two subepochs (that is, epochs at level U-1) of (�3� )U�1cycles. There are �3=� subepochs in an epoch. Since � � 2 and �2 � � ,there are at least two subepochs in an epoch. Thus, the result matrix of Pcan be transfered up from level U during the fourth quarter of epoch i+ 2.Notice that problem P occupies the module for exactly three epochs. Thus,� = 9 (that is, room for three problems in each module) su�ces.At the processor level, the duration of an epoch is a single cycle. Assoon as data starts arriving at a processor, the processor is kept busy untilit �nishes its �nal multiply-add, (�3� )W + 2 cycles later. At level W-1, the44



entire computation takes �3� +2 epochs of (�3� )W�1 cycles each. Dividing thePRAM time �3W=�W by (�3� +2)(�3� )W�1, gives the desired communicatione�ciency.All that remains is to consider the complications posed by restrictivecommunication modes. Since all the modules at a given level compute dif-ferent subblocks of the C matrix, \exclusive write" does not pose a problem.The same submatrix of A (and similarly, of B), might travel down � busesduring the same epoch since each submatrix is involved in � subproblems.However, each submatrix has at least � columns. By staggering the orderin which columns are read, any restrictions on \concurrent reads" may be�nessed. 1As with sequential matrix multiplication, the unaligned case can be madecommunication-e�cient by increasing �. The communication e�ciency willbe reduced since a column of a submatrix may span two subblocks, andfurther reduced in the exclusive read or exclusive write cases since a subblockmay be shared by up to three submatrices. Still, these considerations onlya�ect the running time by a constant factor. Similarly, the case where �does not divide �2 can be handled by increasing both � and the length ofthe pipeline at each module; the uneven load entailed by splitting up eachproblem over � buses can be evened out over � problems. Thus, ( �� )U is athreshold function for any � between 1 and �2.10 ConclusionThe purpose of this paper is both to present a model of computationthat captures memory architecture and to show that the model is useful fordesigning high-performance programs. Many performance-tuning problemsthat arise after the algorithm and data structures have been chosen comedown to data movement problems. The UMH model is a tool for quantifyingthe e�ciency of data movement, thus providing a bridge between algorithmanalysis and performance programming practice.The Uniform Memory Hierarchy model is an abstraction of the Mem-ory Hierarchy model, which in turn grew out of work on a high-performanceimplementation of LAPACK for the RS/6000. Both models re
ect character-istics of the various levels within semiconductor memory | registers, cache,45



address translation mechanisms, main memory, and semiconductor backingstore. They may also prove useful in modeling magnetic storage devices andcommunication channels between processors. The UMH model is intendedto focus attention on aspects of algorithm and program design that are rele-vant to a wide class of machines.Analyses are give for several problems that have been studied using othermodels [F72, HK81, ACS87, AACS87, LTT89] that consider the cost of mov-ing data | matrix transpose and other rational permutations, matrix multi-plication, and Fast Fourier Transforms | to facilitate comparison of results.We leave open the question of how to extend our model for nonobliviousproblems such as sorting.The analyses in this paper proceed in a similar fashion. A model is chosenfor which the time to move just the input and output data on the topmostbus is equal to the computation time. A pipelined program is exhibited thatis communication-e�cient on that model. For matrix transpose and multi-plication, explicit \two-epoch" pipelines were presented that have very tighttiming constraints. For parallel matrix multiplication, a looser three-epochpipeline was used. The advantage of the shorter pipeline is smaller memoryrequirements (as measured by the minimum� needed) and a slightly reducedstartup latency. The paper establishes threshold functions that separatetransfer cost functions for which each algorithm is communication-e�cientfrom those for which it is communication-bound. The constant function 1is a threshold function for matrix transpose, the identity function is one forFFT, and �U is for matrix multiplication. A threshold function for parallelmatrix multiplication on a UPMH is ( �� )U .UMH analysis is geared toward determining, and improving, constantfactors. This activity is the theoretical analog of tuning a program for peakperformance. We have presented matrix transpose and multiplication pro-grams with communication e�ciencies almost, but not quite, 1 for nicelyaligned matrices. We also have shown that no program for matrix transposeor multiplication can achieve communication e�ciency of 1 on models withtransfer costs given by their threshold functions.A novel feature of the MH and UMH models is that buses can be activesimultaneously. Hence, one seeks a program in which the communicationcost along each bus is dominated by the computation rather than one thatreduces the sum of the communication costs along all buses. In complexityanalyses, this can make an asymptotic improvement. An interesting line of46



research would be to investigate what combination of architectural, language,operating-system and compiler features would facilitate a higher degree ofoverlapped or pipelined data movement than is now possible.We believe we are justi�ed in in
icting yet another model of computationon the Computer Science community. The UMH model can express the kindof tight control over data movement that is necessary for achieving near-peakperformance on important computation kernels. Designers of both softwareand hardware currently try to present the programmers with the illusion ofa RAM . There is no question that the RAM paradigm makes achieving amoderate level of performance easier, but it is worth questioning whether theRAM model is helpful for attaining high performance [C90b]. Performanceprogrammers spend days rewriting inner loops to trick their compiler's regis-ter allocator, analyzing how 2-way or 4-way associative caches will behave oncertain programs, and learning the messy details of disk behavior and com-munication implementations. These burdens are imposed because there isno direct way to dictate which blocks should be moved into registers, cacheor main memory. It is our hope that programming tools will be designedto support the illusion of a MH or UMH (and for parallel computers, aPMH), and that performance programming will then be easier since a sin-gle mechanism (the memory module) will su�ce for all the levels of memoryand communication. We emphasize that such tools should supplement, notreplace, the standard tools.Secondly, UMH analysis suggests principles for computer architectureand system design. For example, we have seen that having an aspect ratioof at least 8 or so has made designing certain programs simpler. This pro-vides fresh insight into the question of how large cachelines and pages shouldbe. Similarly, knowing the threshold function for various algorithms suggesthow much bandwidth is needed to support e�cient implementations of thosealgorithms. We can also quantify how much speed is gained by allowing com-munication along the various buses to overlap. Ultimately, just as computerhardware and software have evolved to support the RAM illusion, we hopethey will evolve towards the UMH and UPMH models.A third justi�cation pertains to parallelism. There is a recognized need fora \type architecture" [S86] or \bridging model" [V90] that makes a closer con-nection between parallel algorithm design and actual multiprocessors. Whenlooking for such a model, people often start with the assumption that theRAM model is an unquali�ed success for sequential computing, and thus is47
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