The SAVE system — secure architecture
for voting electronically

T Selker and J Goler

Existing technology is capable of yielding secure, reliable, and auditable voting systems. This system outlines an architecture for polling
place electronic voting, based on redundancy at each stage of the ballot submission process that is resistant to external hacking and
internal insertion of malicious code. The proposed architecture addresses all layers of the system beyond the point when a voter commits
the ballot. These steps include the verification of eligibility to vote, authentication, and aggregation of the vote. A redundant electronic
audit trail keeps track of all of the votes and messages received. There is no single point of failure in the system, as none of the
components at a particular layer relies on any of the others; nor is there a single component that decides what tally is correct. Each system

arrives at the result on its own.

1. Introduction

Computation systems are designed to be the most reliable
systems for tabulation. By their very character, they are not
subject to the kinds of mechanical failures that plague
traditional voting equipment.

Despite the advantages electronic systems offer, several
papers and well-known authors [1] have raised fears,
uncertainties and doubts as to the effectiveness and
trustworthiness of electronic voting equipment.

Electronic systems have several benefits over paper systems,
specifically they remove errors in collection and tabulation of
ballots, speed the tabulation process and reduce the cost and
overhead in acquiring and handling paper supplies. In
addition, if properly designed, electronic voting systems can
actually be more inherently secure than paper-based systems.

computation systems are
designed to be the most

reliable systems for
tabulation

It is possible to create electronic voting systems that, by their
very nature, are secure, reliable and trustworthy. An analysis
of types of possible attacks, the possible scope of these
attacks and the likelihood that they will occur is a place to
begin. The architecture should address these vulnerabilities.

This paper will demonstrate an approach for using existing
technologies in the form of computers and their networks to
effectively and efficiently handle the voting process. Indeed,
the proposed approach would solve current problems while
improving efficiency.

electronic systems have
several benefits over paper
systems

Specifically this paper will lay out an n-version [2] type of
voting system, comprised of multiple, independently
developed modules, that addresses the issues of:

® accurate transmission and recording of voter intent,
resulting from an architecture that performs fault
detection and correction,

® prevention of outside tampering or hacking, especially
involving the threat of changing votes,

° preventioh of malicious internal fraud involving changing
or specifically developing malicious voting system
components,

® interception of vote transmission or falsifying the
contents of messages between system components.

Voting is a complex procedure. This particular paper will not
address the important difficulties of registration, local

BT Technology Journal - Vol 22 No 4 - October 2004 89

record messages between system components. If the system
is not over an open network, this threat is of far less concern.

2.1.3 Malicious voters

A voter gaining access to the system could try to vote more
than once, or as another person, or try to steal the votes of
other individuals. While to date care has been taken to limit
access to smart cards or other methods to opening a poll, it is
possible and important to improve access control to the voting
act. Coercion is always a danger; technology can be used to
allow or to reduce coercion as well.

2.1.4 Malicious election administrators

An unscrupulous election administrator could activate
additional ballots, vote as many people, alter the counts and
attempt to destroy or alter ballot images. By using multiple
component keys and distributed architectures, it would be
more difficult for a single administrator or even a small group
to compromise an election.

it should be assumed that a
hacker could discover the
source code through some
means

2.2, Security

Typical methods of implementing voting security focus on:

® isolating the process so that no one can see or change a
vote,

® building in review.

Typical governmental applications have relied on isolation and
confidentiality as a security approach, labelled by some as
‘security by obscurity’. The most modern conversations about
security describe the value in oversight either by expert
review, redundancy or open-source methods.

In the first case, confidentiality as a security approach has
worked well. Potential hackers have not had access to the
software and have not known what to do when they have
access to it. Software systems for voting are relatively new.
People attempting to compromise security in elections have
not been sophisticated hackers yet. The approach of
prohibiting access to things that should remain secure has
been very successful. A final key point is that voting conditions
change with time, many ballots being finalised within a day of
the election. The concerns that would alter a specific ballot
tend to be more local and time dependent than concerns
about trying to bring down a country or economy.

Certainly secrecy itself is a key method of preventing the
wrong people from gaining access to sensitive data. However,
secret and closed systems present the serious problems of
Easter eggs and backdoor approaches. While these problems
may seem far-fetched, they have to be taken seriously,
because it is possible that a set of voting machines in a

The SAVE system — secure architecture for voting electronically

particular precinct could be turned into zombies by setting
them to a testing mode.

Such tampering, of course, would be easily uncovered due to
the discrepancy with the number of registered voters casting
ballots. However, if, for instance, four to seven officials at a
balloting place agreed to work together, they could cast
ballots after the voters left. While these methods seem to have
worked for a long time, there have been breaches of security in
many elections. Most have been isolated incidents and have
had little impact on the national level. Thus they have merited
little national scrutiny, however after the 2000 US election, all
errors have been made highly public.

However, with the prospect of large-scale, undetectable fraud
by using a single system, it becomes more important to have
an n-version system, with full auditing along the process.

In addition, security means protecting the voting system’s
ability to operate effectively for the entire period of voting.
Thus, it must be able to resist denial of service attacks,
malicious physical attack and loss of electricity. Much of this
security derives from the effective operation of the election
and not just the equipment.

3. Architecture overview

Designing secure systems requires attention to many levels.
Our approach begins by ensuring that there is no single point
of failure after the ballot leaves the eyes of the voter. The
security starts with the general system concept and goes down
to specific ways that the code is written to avoid introducing
reliability problems at any stage. The key advantage of this n-
version architecture (Fig 1) is that structurally there is no way
the whole system can be compromised without compromising
a very significant number of the parts.

The principle of redundancy is central. It enables the system to
continue to work even if there is a failure somewhere along the
line. Having multiple programs that process each stage of the
ballot casting can establish improved reliability; regardless of
how they are written, regardless of who has written them, and
regardless of whether they are the same code. Because these
versions can be transmitting over different networks, the
system is more reliable. Because these are different programs,
subverting one of them would not affect the others and still
would ultimately enable an accurate vote to be cast. More
importantly, if different people and organisations write these
modules, intentional tampering of one module (discussed as
the ‘evil equipment developer’ in section 2.1.1), such as
putting in an Easter egg (a secret module of code that invokes
undocumented functionality), would not affect the integrity of
other modules.

However, to be sure these new measures are effective; the
system will have to be tested beforehand. By forcing each
module to comply with the abstraction-function behaviour
that we specify, the architecture will be uniformly black-box
testable. In addition, there must be no difference between a
test vote and a real vote, as far as the software is concerned.

In our system we separate the aspect of user interface from
the rest of the voting system. The intent is to allow user-

BT Technology Journal < Vol 22 No 4 - October 2004

91

4.1 The user interface

Perhaps the most vital component of any voting architecture is
the user interface. This architecture allows for the user-
interface modules to be developed independently of the rest
of the architecture. This flexibility permits faster progress
incorporating human factors’ research in improving the voting
experience. Other work [8] establishes user-interface quality
assessment. This architecture recommends that all available
effort be put into building a user interface that is extremely
effective for efficient and accurate voting.

The user interface takes two inputs — the interface definition
and the blank ballot. Both of these components are XML
documents. The interface definition describes the way in
which the Ul is to render a ballot.

The user interface collects the votes of the user, as well as the
registration data. It then encrypts the ballot using keys from
the aggregators. The registration information is added to the
encrypted ballots, and the resulting packages are then
transmitted to the registration system.

When the user approves the ballot, there will be an n-version
type system of digital cameras mounted to the DRE that can
take a picture of the ballot, or redundant device drivers that
observe the actual ballot on the screen and record the
contents. To prevent the production of an actual receipt, the
picture can only include the ballot itself, and no other features,
so that either the ballot is showing entirely or the ballot is
obfuscated, so a user cannot put his or her face in the way, or
put a piece of paper saying ‘Alice Bobster’ in the way.
Nevertheless, since the digital photograph back-up is not used
as the primary counting mechanism, this problem is of little
concern for coercion and vote buying.

4.2 The registration system

The registration system is the centre of this voting
architecture. The registration server has access to the roster of
all registered voters. When the registration receives a ballot
package containing registration information and an encrypted
ballot, it looks at the database, checks to see if the user is
valid, and then makes an entry in the database checking off
the user as having sent a vote to the aggregator.

Each registration module extracts the encrypted ballot, signs
it, and then sends it to the witness modules (see section 4.3)
for their signatures. Once the witnesses return their
signatures, the signatures can be appended to the encrypted
ballot. Then the whole ballot package {without individual
identifying information) is shipped off to the aggregators.

4.3 The witness module

The witnesses are the simplest of the modules. They take as
input an encrypted ballot and produce a signature. Signatures
are produced using MD5/RSA [9]. The ballot is digested, and a
hash is produced, which when combined with the witness’s
private key, produces a number that, as far as we know, can
only be produced by the holder of the private key. Witnesses
do not maintain a record of the ballots coming through them,
as they are meant to be lightweight implementations,
preferably using separate databases or smart cards so they
can be handled easily. Witness modules are to be provided by

The SAVE system — secure architecture for voting electronically

independent organisations (e.g. political parties, watchdog
organisations).

4.4 The aggregator module

The aggregator module takes encrypted ballot packages as
input. The packages contain the encrypted ballot and a series
of signatures produced by the registration system and
witnesses. The aggregator parses the signatures and uses the
witness public keys to verify the signatures. The aggregator
then determines that a set threshold of signatures verify and
then decrypt the ballot. Once the ballot is in plain text, the
selections are parsed and recorded. Both the encrypted and
plain text versions of the ballot will also be stored in a
repository.

4.5 Messaging protocol

The messaging protocol is based on XML. Communication
between modules is simple. The listening module waits for
connections; the signalling module then initiates a socket
connection, opens an output stream, then an input stream,
and writes a string containing the command to the listening
module. The module then does its processing and writes a
string of commands indicating its response. The output
stream is closed first, and then the input stream is closed.
Standard sockets are used to connect between various
components. The prototype implementation uses the Java
Socket and ServerSocket classes that are conveniently
provided by JDK 1.4.

5 Security and reliability via architecture
The architecture of this system uses modularity and threshold
agreement for fault and hack tolerance. Redundant audit trails
enforce certain security and reliability. Modularity is an
important cornerstone of any system that can be scrutinised.
Each component we have developed is a few hundred lines at
the most. And most of that is simply placing the data into a
database. The tightness of the software code allows it to be
quickly and easily certified to do what it is intended to do, for
its compliance with the protocol that demands plug-and-play
interaction with the rest of the architecture, as well as code
that is easily viewed by outside agencies to determine its
accuracy and correctness. Additionally, the separation into
interoperable modules creates a voting system that could be
modified in one aspect without affecting the certification of
another aspect or component. This modularisation
dramatically lowers the cost in time and money for
certification as systems are created and improved. The most
important part of modularity, however, is that by separating
the modules by steps we can analyse security in each stage.

Each module keeps track of the other modules it is supposed
to send and receive information from, as well as the public
keys of those servers. Modules are defined by a contract that
indicates what they are to send, receive, and process. By
creating a standard contract, anyone can write to the standard
and plug a module into the working environment. The
architecture itself enforces security and reliability while
improving maintainability.

In the previous stage there are n systems, each of which

provides a piece of data. We cryptographically verify the data
for each of them, checking their keys and signatures and

BT Technology Journal - Vol 22 No 4 - October 2004

93

voting system architecture outlined in this paper takes the
distributed approach to security to another level. Instead of
relying on a single company to provide a system in a region,
we are relying on the distribution of people to avoid fraud. The
architecture becomes more secure when more people are
involved. In some cases, too many people involved produce
sloppy and buggy code; however, by the very architecture
involved, this system becomes more secure and reliable as
additional modules are added. Even if some of the
organisations have their own political agenda (and act on it),
the architecture will maintain the integrity of the system.

Multiple groups create versions of the same part of the
architecture. It must be easy for an election administrator to
pick n of these systems, and run them seamlessly. Thus, there
should be a common registry of these modules, and an
effective means of ensuring integrity.

6. Conclusions and future work

This voting architecture provides a means to vote over open
networks in a way that is reliable, secure, and private. Due to
its modularity and common specifications, it is easy to
implement, improve and it is inexpensive. The system uses
COTS equipment for the all of the back-end systems, reducing
the likelihood of fraud with the system components as well as
keeping the cost down. These innovations make it particularly
attractive for implementation as state budgets are
increasingly tightened.

N-version programming can be a powerful tool for improving
electronic voting security. The next steps to creating an n-
version programming voting system are using it to secure the
user interface and using it to secure back-end vote tabulation
and storing.

Much work remains to be done in the voting architecture field.
Our group is working on developing effective user interfaces
and improved registration systems. We are also examining
ways of providing verifiable feedback to users, but in a way
that does not compromise the confidentiality and receipt-
freeness requirements of voting. To address the need for clear,
balanced ballot forms, we are developing an artificial-
intelligence-based system to help inform ballot designers.

Acknowledgements

We would like to thank the John S and James L Knight
Foundation and the Carnegie Corporation of New York for
their financial support of our research. In addition, we thank
the members of the MIT-Caltech voting technology project for
their advice. We thank Soyini Liburd for her work on further
developing, and analysing an n-version voting system.

References
1 Liburd S: ‘An N-Version Electronic Voting System’, (July 2004).

2 Saltman R: ‘Adopting computerised voting in developing
countries: comparisons with the US experience’, CPSR Newsletter,
Computer Professionals for Social Responsibility, 16, No 1, pp
13—16, Computer Professionals for Social Responsibility (Winter
1998).

The SAVE system — secure architecture for voting electronically

3 Fujioka O O: ‘A practical secret voting scheme for large scale
elections’, AUSCRYPT 92, pp 244—251 (1992).

4 Avizienis A: ‘The methodology of N-version programming’, in Lyu
M R (Ed) ‘Software fault tolerance’, Chapter 2, pp 24—46 Wiley
(1995) — http://citeseer.nj.nec.com/avizienis95methodology.
html

5 Kohno T, Stubblefield A, Rubin A and Wallach D: ‘Analysis of an
electronic voting system’, (July 2003).

6 United States General Accounting Office: ‘Elections: Perspectives
on Activities and Challenges Across the Nation’, (October 2001).

7 Fischer E: ‘Voting technologies in the United States: overview and
issues for congress’, (March 2001).

8 Selker T: ‘User interface and ballot design as part of an improved
voting system’, (May 2001).

9 Rivest R: ‘Security in Voting Technology’, House Testimony (May
2001) — http://theory.lcs.mit.edu/~rivest/rivest-may-24-01-
testimony. txt)

10 Rivest R: ‘The MD5 Message-Digest Algorithm’, IETF RFC 1321
(1992).

11 Caltech: ‘Voting: what is, what could be’, MIT Voting Technology
Project (July 2001).

Ted Selker is the MIT director of the
Caltech/MIT voting project, which
evaluates the impact of technology on the
election process. A large part of his work in
voting is concerned with inventing and
testing new technologies for voting.
Examples include new approaches to user
interface and ballot design, and secure
electronic architectures and approaches
for improving registration.

His Context-Aware Computing group at
the Media Lab strives to create a world in
which people's desires and intentions
guide computers to help them. This work creates environments that
use sensors and artificial intelligence to create keyboard-less computer
scenarios.

Prior to MIT, he was an IBM Fellow and directed the User Systems
Ergonomics Research lab at IBM. He has served as a consulting
professor at Stanford University, taught at Hampshire College and
Brown University, and has worked at Xerox PARC and Atari Research.

Jonathan Goler received his BS and MEng
from MIT. He has been actively involved in
the MIT/Caltech Voting Technology project
since its inception, and developed the first
n-version voting architecture. He is also
active on the IEEE P1583 electronic voting
equipment standards committee.

In addition, he serves as a researcher in the
Synthetic Biology Working Group at the
MIT Al Lab, where he develops design and
simulation tools for synthetic biological
systems.

BT Technology Journal - Vol 22 No 4 » October 2004

95

	SCAN0847
	SCAN0848
	SCAN0849
	SCAN0850

