RC 14130 (#63295) 10/27/88
Computer Science 8 pages

Research Report

The COgnitive Adaptive Computer Help (COACH)
Interface

Ted Selker

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, N.Y. 10598

Publications Library
T.J. Watson Research

RC 14130 (#63295) 10/27/88
Computer Science 8 pages

Research Report

The COgnitive Adaptive Computer Help (COACH)
Interface

Ted Selker

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, N.Y. 10598

LIMITED DISTRIBUTION NOTICE: This report has been submitied for publication outside of II3M
and will probably be copyrighied if accepicd for publication. It has been issued as 3 Research Report
for early dissemination of its contents and will be distribited ouiside of IBM up lo one year after the
IBM publication date. In view of the tronsfer of copyright @ the ostside publisher, its distrivution
outside of IBM prior 1o publication showld be limited 10 peer commumications and specific requests.
Alter outside publicatioa, requests should be filled only by reprimts or leglly obiaised copies of she
articke (e.g.. payment of voyaliics?,

=% £
= £*& Rescarch Division
Almaden « Yorkiown « Zurich

The COgnitive Adaptive Computer Help (COACH) Interface

Ted Selker
Thomas J. Watson Research Center, IBM
P.0.Box 218
Yorktown Heights, N.Y. 10598
Selker@!BM.COM
914-845-2217

Keywords: adaptive, artificial intelligence, machine learning, production system, user
model,intelligent tutoring system.

Abstract

This paper describes COACH, a system designed to mimic the kind of empathetic
help a human coach can provide. The system builds an adaptive user model to at-
tempt to understand a user’s needs. COACH watches a programmer’s progress, ad-
vising with syntax, examples and language underpinnings as needed. COACH
ceases advising in situations where its user has demonstrated expertise. COACH text
reappears when that user once again needs help. Whether giving help for user-
initiated explanations, or acting as an advisor for COACH-initiated explanations,
COACH presents information at the level which a user has shown competence.

COACH is an architecture for experimenting with adaptive user models. The lan-
guage COACHed on, the way COACH adapts and the pedagogical paradigm can be
changed by writing a language definition table, courseware facts and COACH learning
rules.

The system runs on The Symbolics and IBM PC-RT computers. GOACH has been set
up to teach Common Lisp COACH. User studies are being run. COACH is also being
set up to run for UNIX, and other interface languages.

introduction

Many new computer users have personal goals and are not always motivated to fol-
fow a didactic lesson plan. Behavioral studies show that help systems are more ef-
fective when they are available from within the computer program (integrated) and
help response is based on where the user is in the program (context-dependent)
[1]. Other research in Intelligent Tutoring Systems [2, 4, 7, 9], motivate our work
on systems providing integrated, context-dependent, adaptive coaching. '

Burton and Brown [8] built mixed initiative electrical circuit trouble-shooting coaches
(Sophie1,2 and 3). Sophie 3 compared students to a model of an expert circuit de-
signer. The system reasoned about user problems, assuming the difference between
novices and experts to be attributed to bugs in user’s otherwise expert approach. In
their work, user exploration was promoted as a way of improving task relevance of
a syllabus.

COgnitive Adaptive Computer Help (COACH) expands on Burton and Brown’s ap-
proach by being designed for use with large domains and expecting different needs
of novices and experts to come out of their inherently different user models. We be-
lieve a coaching approach is useful for open systems where the goal of the user is
not assumed. The key contributions of COACH are the application of an Adaptive
User Model to the advisory coaching paradigm in a system which can be reconfigured
as a testbed for experiments in Intelligent Tutoring.

COACH analyses a user’s syntactic and static semantic understanding of the system
being used. It integrates this analysis into possible coaching responses. As a user
needs help, the system advises (coaches) them. User expertise in COACH is relative
to the tools the user is expert with. A user may be expert with lists but lousy with
arrays, COACH's help adapts giving detailed help for arrays but not lists.

A system could help a user as an agent performing tasks in the ysers behalf or as
an advisor merely telling the user about things the user might need to do. [6].
COACH's paradigm is advisory since it does not type for the user; it does not lock the
keyboard; it never types where a user could type; help information is provided in a
separate window pane.

The COACH Interaction Paradigm; How users learn

The COACH interaction paradigm consists of a coaching process advising a user as
the user types a program. Coaching text can be called with user menu selection, but
like real coaches help often is provided by the coach by its own initiative.

Based on user experience and expertise, COACH rules decide whether to show de-
scription, syntax, or examples. If a person has read descriptions many times the
system expects that the person does not need to read the same description again.
If the person has improved, then the syntax level will change and the examples will
change. If the person has seen the syntax and used it accurately, then the system
will not show the syntax again. The examples do not change untif the person has
adequately mastered the level for which the syntax has been described. This exam-
ple of control reasoning is adaptive and described by rules.

COACH includes an incremental interpreter with backup. Each new character a user
types changes coach’s expectations for what can be typed next. |t uses an adaptive
user model to give advice appropriate to the users expertise and experience.

COACH's user model is explicit. COACH uses frames, facts, rules and learning
technology to represent a model of the user and the language with which being

interacted with. COACH learns, picking up examples, and keeps track of what a per-
son does right and wrong.

A person types into a input “listener” window. The system responds with advice in
the help and token help windows, shows results in an “effects” window and allows
other interaction through menus

COACH Adaptive User Model System COACH i
L Ferm: LOOFD with o 25 leval of J . = =

COMD gve hmtes e condition part of o contion—sction pakr. #f the condition s trus,
umunmmmncmmuu. H o contition 8 taise, COND retums ail

CCEN (asmtition ootien))

Cromrn i
» (T8 svsber) :] H
? (Comm ((000F pumber) (809! custar})) ——— -, o
* (SIT0 cumber 4) . ’
S (Com ((0007 somtbor) (B09! EomSer))) —————eee———) KL :

fosostod Tedans [with @ susewss lowel of 28 ,
Dosaripmn trevobos furctaon, begen o het

Systes
Lacmpen (oerd ((omus) & (ttase-2 3)) (oeta o low

ADVICE ABVICE ABVIEL ABVIEL ADWICT ADVICE ADVICT ADVICT ADVICT ADVICE ADVICE ADVICE 4DVICT ADVICE ADVICL ADVICT 4DwiCT ADwviCT
- :lll‘ - !i - ™

:t-fqn t1me9-2 (rum) | &

(trmps 2 manl)
Heend ((emmal & (tiass=-2 3)) (seta o (mmtiont & 2)))0 I
1
I

l
|
!ﬁ
) I

T O L T O L L O L O L L T T L S YA ST TS LIPS V5 jise [refi¥s gige fiefe
Y (3

’_l
VEIL AT TN TIORS TET TN [-EVH=. & T e -HLF USTF —H L TRV TS E

L

T3 5

Figure 1. Coach Interface.

The listener window shows the user’s work. This window is an interpreter of the
language the user is trying to write in. it uses the popular Emacs commands to allow
a person 1o edit input.

The “effects” output window shows the effects of the input the user typed. A help
menu can be displayed permenantly or poped up at any time.
This is the way a user explicitly asks for help.

The COACH help window displays information designed for the user’s current needs.
It shows a user legal syntax, pertinent examples and helpful concepts.

The token help window is closest fo the listener pane, the token window formats
specific, local information such as misspelled variable names and word or character
level problems. Like a syntax-directed editor this pari of the screen can walk a user
through syntax. The kind of keyword and variable spelling corrections Teiteiman’s
DWIM system [10] could handle are dealt with in this area. Farther away from the
listener window COACH provides general information. Examples of the function that
the user is trying to use, descriptions of what it is good for and information about how
it relates to other things this user knows are provided, at the level COACH finds ap-
propriate for this user.

COACH treats a person that knows all about some part of the language, and little
about another part of the language, as a novice only in the parts where little is known.

For example, if a person knows about COND and is beginning to use IF: since there
is a relationship between COND and IF through the concept of predicate, the system
can show that the predicate COND, which is already known is similar to IF. Similarly,
when a person has trouble using COND, and already knows how to use IF, the system
should extend the IF experience to COND, showing the relevance of IF experience.
If the person has already mastered something which is at one level, and is learning
something similar, COACH recognizes that less instruction will be needed.

COACH Architecture; how Coach works

An adaptive user model drives the COACH system. COACH rule and fact knowledge
is structured to permit real time time reasoning on a user model even in a complex
language like Common Lisp. COACH is built as a set of interacting objects which
work together using knowledge rules and knowledge from a user’s current user
model to help that user.

Adaptive User Model

An adaptive User Model is a formal description of a user relative to some domain
which changes to improve or track a user’s change in knowledge in that domain.
COACH's user mode! consists of connectivity of relationships which are known for a
specific user, examples generated and characteristics of experience, expertise which
the user infers or the user has demonstrated. This architecture is used to create a
user model for a language, providing help on the user factors:

1. language tokens e.g. “CONS”", .
2. language forms e.g. (CONS arg1 arg?).
3. basis-sets; sets of factors, all of which must be known to do a kind of task
e.g. (Basis-set simple-LISTS Atoms S-expression CONS CAR CDR).
4. required-knowledge; sets of factors all of which must be known to use an element
in a language, e.g.(Required-Knowledge CONS S-Expressions Atoms Jand
5. key concepts; fundamental ideas in a language, e.g. EVAL.
6. help menu selection

The system has a list of concepts that a person needs to know. COACH'S first tested
domain is Common LISP. If a person is typing LISP, the system notices: Are the to-
kens being typed correctly? Are keywords typed after the open parenthesis in an
S-expression? Are forms being made correctly? If the function CONS is being used,
has the person shown themselves to know required knowledge? The system has
concept information in the rule base describing concepts ranging from EVAL and
QUOTE to what a program is. Concepts are described relative to what they are used
for. When a user needs to use a concept and is not yet proficiency with it COACH
will consider including it in help information.

COACH's user model records the following user model characteristics for each user
factor:

- number: The number of uses that have been made of each user factor.

best: The most sophisticated use a user has made of a user factor.

experience: How much it has been used.

latency: How long since the user has used this.

slope How fast a user is learning or unlearning something. How much the so-
phistication of use been changing with usage and over time.

6. examples: Examples of errors and fixes fo those errors, When a person makes a
mistake, the system records that as an example; when the person is able to

0N

complete an instruction correctly, it stores that “fix” with that example. Then, if
the user later makes a syntactically isomorphic mistake, the system displays the
familiar example. e.g. (SETQ A (CONS 5) Expected “)” corrected to— (SETQ A
(CONS A 5)) GoodnessAn overall metric is also kept.

Slope and examples made a large impact on users in our early system called Lexical
Expression Language Parser Help (LELP HELP) in 1984.

. When it has the opportunity, the system adds new user-defined functions to its table

and adds help information to the newly defined functions. Many characteristics that
are recorded are actually scalars to help the system react at the speed that a person
is typing.

Each user factor ‘can have four levels of help defined for descriptions, syntax, and
examples, The levels are an extension to Edwina Risland‘s taxonomy of examples
[5] to descriptions and syntax:

help taxonomy:

1. Starter knowledge is used as a novice level, only simplified basic information is
provided.,

2. reference knowledge, a more accurate description which tries to lead users into
more complexity.

3. model knowledge, is completely descriptive explanation of what something is,
and how to use it.

4. anomalous knowledge is machine readable syntax, the very complicated,
idiosyncratic examples and descriptions that one might find in reference manu-
als. . -

COACH Knowledge

The following COACH knowledge drives the system and is re-definable by a re-
searcher or designer: . The language COACH is helping a user with is defined by
language knowledge:

1. Token definitions for the language a user will be coached on are defined in a ta-
ble with associated token methods.
2. Syntax definitions for the language are defined in a syntax language: e.g.. (PLUS
L] N)
3. Help Information for a language we call courseware. Courseware is a set of
facts.
e Courseware about the language the user is learning is separated as much
as possible from courseware about learning.
» Concepts in the domain that the system is teaching are also kept as a list of
facts.
 The relationships between concepts and syntax definitions are kept as facts.

The way COACH presents courseware is defined by curricular knowledge:
® Reasoning and planning rules about how information interacts are kept as rules.
The way COACH change the adaptive user model! is defined by adaptive knowledge:

e learning rules; rules describing how to change the behavior of the system when
a person performs an action.

These elements provide a system that can be tailored for different languages and to
test out Infelligent Tutoring ideas.

COACH structure
The Coach shell consists of five objects which interact together to make the system.

® The coach-frame manages the Emacs-like editor, the menu, screen real estate
and dispatches input key and mouse events.

® The coach-reader handles token level interpretation of what the person is typing.
The coach-parser handles the lexicon, and builds the syntactic unit the person is
typing. Both the COACH reader and the parser serd the COACH user information
about how the user is doing.)

¢ coach-user relies on PS, the production system, to make decisions based on the
information it is gathering and the user model it has built to decide how to advise
the user.

® coach-ps, the production system, it reasons.

COACH Learning Strategies; how COACH leamns.

In order to learn in real time COACH limits itself to opportunistic and simple hill
climbing learning. By reference to the taxonomy of learning shown in Machine
Learning [3], the ways that COACH uses learning may be classified:

® The system uses learning by analogy by looking for and explains in terms of user
factors that the user already knows. It reinforces successes, for future use. The
network of relationships between user factors, language concepts required
knowledge and user defined factors is the basis of the substrate upon which
these analogic relationships are determined.

¢ Learning from instruction is another method COACH uses. The parser takes
statistics on the style of interaction to which the user responds to and the level

. of the user. -

¢ Learning by programming is used by the designer to incorporate into COACH
newly acquired knowledge of how to change the way the system treats a person
in different situations. This is similar to the syllabus notions that have been used
in classical intelligent tutoring systems.

* Learning from examples is used by the system for including help for user defined
functions. The system generates reference syntax with no optional arguments,
anomalous syntax with machine readable syntax. The system records examples
of use of new functions, classifying them by the sophistication of syntax for use
in demonstrating use of the function. The function author is also free to generate
descriptions, key examples and descriptive syntax help.

Discussion

A pilot user study with professional, Lisp nieve programmers, allowed us several
encouraging observations. When working with COACH people experimented, read
help text a lot more and finished problem sets faster than when the same help infor-
mation was only available in text. Post exercise sessions tests did not show a de-
pendence on COACH help to retrieve information. We are running more user studies
to document the effects of coach on students in detail.

COACH is written in Flavors. Versions of it run on Symbolics Genera 6 through 7.2
on Mach Lisp with CLOS on an IBM PC-RT. The Common Lisp implementation has
carefully crafted courseware for common LISP functions, approximately 40. It auto-
matically constructs help for all other functions defined on the interpreter which the
system evaluates its input. On the 3645, with four megabytes of memory, the system

is able to keep up with the person’s typing Additional Language elements do not slow
down the system. performance problems occurs when & user insists on leaving mis-
takes unfixed. In these cases, the system must attempt to re-parse all forms in a
routine every time a user types a character.

SUMMARY

COgnitive Adaptive Computér Help is an architecture for including user backgiound
in computer-human interactions. It uses learning and reasoning to direct its role as
an advisor/coach of computer users.

COACH as a front end allows users to forego the requirement of reading manuals
before using a system. COACH assumes a directed user; people sit down at a com-
puter with a goal in mind, something that they want to do, and they have experience
which they are bringing to bear on this situation. As systems become more complex,
people will master parts of it useful for a specific task at a specific time. Can a co-
hesive syllabus even be designed that covers 25,000 commands to do everything
from make noise to control page faults in a system. COACH designed to have a
minimum of syllabus and a maximum of interaction variance.

COACH is segmented into the COACH-frame with its user-interface package, the LISP
parser editor which has the tokenized Lisp parser, the knowledge base for presenting
Lisp and teaching knowledge to the user, the reasoning system which controls the
system, the set of rules which run the system, and the learning system. The adaptive
user-model is stored as a separate file for each individual user.

COACH is useful to novice users because it shows them syntax before they make
mistakes. It is useful to intermediate programmers because it helps them through
the task of putting modules together by showing them the syntax in a context-
dependent way. It is useful for advanced users showing them syntax in a machine-
readable form and when they are looking at new parts of the language.

COACH is designed to be a vehicle for demonstrating research ideas in adaptive
user model technology. A COACH System User Manual is available for learning how
to use the COACH system to make an adaptive user model based research system.
Currently COACH is being used at the T. J. Watson Research Center for research on
teaching Lisp, COACH Courseware is currently being built for UNIX and K-REP as
well.

Bibliography

1 N. S. Borenstein. The Design and Evaluation of On-line Help Systems, PhD
thesis, Computer Science Department,Carnegie-Mellon University, 1985.

2 John Carroll and Amy Aaronson. Learning by Doing \Qith Simulated Intelli-
gent Help. CACM, 31(9), 1988.

3. R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning: An
Artificial Intelligence Approach. Tioga Publishing Company, 1983,

4, B. J. Reiser, John R. Anderson, and Robert G, Farrell. Dynamic Student
Modeling In An Intelligent Tutor For Lisp Programming. IJCALI, 1, 1985.

5 E. Risland. Understanding Understanding Mathematics. Int. J. Man-Machine
Studies, 2(4), 1978. - -

10.

O. Selfridge. Personal Communication, 1985.

D. Sleeman and J.S.Brown. Intelligent Tutoring Systems. Academic Press,
1982.

D. Sleeman and J.S.Brown. Intelligent Tutoring System:s, chapter 4. Academic
Press, 1982.

P. Suppes. Some theoretical models for mathematics learning.. Journal of

Research and Development in Education, (1):4-22, 1967.

W. Teitelman and L. Massinter. The Interlisp Programming Environment.
Computer, 14(4):25-34, 1981.

	pt1
	pt2
	pt1
	pt2
	pt1
	pt2
	pt1

