ﬂl. LA T g

XA AT o B

e T e SIEUN b 218 TS TG T TR

R SR A s)

0 S T S

N e o N e e Y R T

RC 16776 (#74079) 4/16/91
Computer Science 31 pages

Research Report

Graphics as Visua] Language

Ted Selker and Art Appel

IBM Research Division
T. J. Watson Research Center

" Yorktown Heights, NY 10598

Ty, = Mathematical Sciences Department

Publications Library

N . 1-J. Watson Research

O peEr CemmuUnitag miliind
Or legally .obl‘ufged CORFET

Graphics as Visual Language

Ted Selker Art Appel

IBM Thomas J. Watson Research Center
Yorktown Heights, NY

Abstract

Visual language 1is the systematic use of visual presentation (graphic) techniques to con-
vey meaning. Current computer user interfaces make extensive use of graphic techniques
in many areas. This chapter defines structural elements of visual language as & frame-
work for describing computer graphics.

Graphics presentations can be described as having the following visual elements:

graphical alphabet the set of visual primitives used in a visual language

graphical syntax the composition of primitives which form visual statements
interaction language the set of user to system primitives
structure rules that combine sub-languages to form 2 language

The classification of the visual elements can be viewed as 2 linguistic description of visual
language.

The chapter explains how computers can create graphical presentations and promotes the
utility of graphical presentation of data. A concluding section is devoted to the use of
graphics in statistics.

Table of Contents

Lo INEEOAGEHON vo0ioninin i & & are & B mmmmmmm e s o8 & ¢ 80 8§ 680 PSR T |
2. Background: c.owieis s s R ;............ 2
3. Graphical Alphabet F e W Rl B e Y 3
A Guideito Graphical RendefINg . cowow s wrvrein & srwmme simsne o v s = @ svmime eoain v ave 3
Gray Scale RENdETING & - cioew swems o wemn & e@mrs Sy @ s & B cwms @ e 4
Rendering Computer Generated Data 6
Rendering DataSets (i oesz it sans dneni i 505 § 9omi 5 sad g sk v v 7
Rendering To Enhance Interpretation iiinnnnn.. 8
Drawing Planes in Space fin e sinane W M & SR € VIENIS & NCRGE %R 9
Floating Horizon Rendering for Surface Patches 12
Rendering to Emphasize Structureo it innroonnecaioaianas 14
4. Visnal synfax soeasiiissiisrsweidmeisdes sns s adiei s atranys W
5. interaction " ¢ & & & ® & & 8 8 @ " ® @& % @ @ & & 8 ® & & @ @0 & & @ & ° & & 0 & W 8w a ® @ = @ 9§ @ 20
6. Visual Language Compositionc.. .. LY TERETY o 22
7.Visual Language Revisited¢cc0euvean. S %55 EE LG EEEEEEE 23
8. Computer Graphies Aids For Statisticians ch e s es e 24
GLaphINE « cownmve ¢ vawen 3 wpss Sms § Swsie @ w5 sems ¥ metes 3 e eI W Wi 24
ColofiSING wwwers o oo & cowm wa i & GHHR0E ¥ VOAEES ¥ STEORE ¥ SURCEUE ¥ GG 6 RN W 8 24
Mathematics + Graphics = Analysis nn... ce.. 24
Alternative Presentations: ac cowi s sdnsc e sUnmn s sawin v it 5 Sam € & 24
eraphive Paclenpslr ..o 5 s somme 5 st 2 sasd % sohr & SEEA S mein 5 08 5 24
Graphics Aids Statisticians Can Look Forward To o) xven o) e RS 25
Interactive Realtime Microworlds. . . cwiet s cnmvnn o wrvvae o wenees & sisisis o wioe o 25
Secing lavge Data ' Bets : coan oo o e 2 9eis § Sowi & PreE § D 8 v e 8 25
Automated Presentation c.iu vamie v e s e s & va T 17 25
9. Acknowledgments:¢:c0c0 0000000 S R %5 E R 26
10. Bibliog‘raphy @ ® % 8 8 % s w8 8 8 8 8 8 8 % %R e o woeososoaosoes oo osos s & & 8 8 8 s ® 8 ® 28

Table of Contents ii

List of Illustrations

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

IS T o Ae——— e R GRS RS 3
2. Computer Graphic screen.c.ceeoreerrmrerrrses e 4
3. A picture of a human head. e s s o s 3 SRR E ST SRR W e L. 4
4. Recording image data.cconrrenccrannae s 5
5. Thresholded image data.-cocciommaserccsrosnsecaenss 5
B & FOHECHE GG o » moh 3 ¥ RN S0 & iwsa o wae o ssnore § B RE R0y © 6
R Aeee——— 7§ EAL A R e 6
8. Calculated data Image, . ..o cecenrnecssaaeeen o e e s 8
9. A false color image-«..-- e e R G DR SRR e 8
10. Black painted edges on white cube.ueeaee et 8
1. ‘A threshinlded QEPloY . =05 & Cos § GewE ewa s weemn 1 R GERE N RS 9
14 Measurement of 8dgeH. v -onli » v snp 3 Sl ¥ sara @ paim & cpaie 8 mne § R 9
13. Three dimensional scene creation. § B EATR E e . R & 8 10
14. A wire frame rendering. ceceaae et 10
15 CIRESE WIE oo 5 SaeE gas & R & wamd pisons R § HeEE Byes we 10
16, Lowor angle VIOW & - nf & SEAH § B9 & P o me semhs S F e = 10
17. Hidden lines removed ccee oo et 11
18, ‘Hidder Yitias dotted « cwn s oams 3 9 B sowa 5 sete ¥ weein v mienen SR 2 11
19. Roof defined as a separate object.cecceeaenernameenns 11
90. Hidden lines dottedcveeceronannnnemmares oo s 12
91. Data displayed spatially.occvenr o 12
92. A wire frame drawing---- e e e & PR § AR 6 13
93. Floating horizon renderingccororerernmrnsrrenns 13
94. Sliced rendering. - .:cecoesestsonaes st oernoS 13
95. Surface rendering. «......cocecsreas e aa e R 14
98 Boase added woes sema ko smons x s waos 8 BHOE ¥ B 6 SR s o w0 14
97. Side horizon envelopescccccecrosenna e 14
98. Data floating above a base.cco et ... 15
99. Data drawn in reverse ordercosecsees s 15
30, TooTHpoD BHOKE wo o o5& 55087 § G40 & Swmmis s sond & S0 SRR O 15
31. Suggesting data envelope TE 16
39 Curve on the surface.-cceeonesasenneesrrrososess 16
33. Section drawing ... :coeveecerannesass oot 16
34. Sequential Positional Relativecoevvenmrermrrmmress 17
35. Metrical Positional Relativecc.cvenneenncrmenennmens 17
36. Embed Positional Interacting Syntaxccececromeerrres 18
37. Intersecting Positional Interacting Syntax.ecoeererrrrers 18
38. Shape Positional Interacting Syntax.c..coererrrrmrroses 18
39. Labeled Positional Denoted o R ¥ e & wspm w wibh ¥ HETR 18
40 Mo adibor .- & CEwH @ ows & wesm s s » wems &6k ¥ T ceo. 22
41, Instruments cocecaena s e e SR A 22

List of Illustrations iii

1. Introduction

Computer users cannot avoid being influ-
enced by icons, menus, and computer graph-
ics.

A fruitful way to begin to understand ap-
propriateness of graphical techniques is by
enumerating them in a structural classifica-
tion. We don’t know all the answers as to
what graphical representations are best;

. how does a specific graphical user interface

reveal the underlying semantics of the pro-
gram? How does the use of graphics in one
interface compare to other interfaces? How
does a specific use of graphics affect the
understandability of data? What other kinds
of data should be presented with such an
interface? Questions such as these can il-

Introduction

luminate tradeoffs in a specific use of visual
language in a user interface [51].

The field of graphic design has generated a
set of rules for creating depictive text and
graphics on paper. Several books have been
written as guides for designing graphic
presentations [29, 60]. We should draw
from such work to codify and extend these
rules to interactive computer systems. Peo-
ple in fields ranging from semiotics to soci-
ology have begun the process by cataloging
techniques and describing the value and
power of - visual languages
[4, 8, 15, 30, 40, 54] Mackinlay86'.. This
chapter explains concepts of visual elements
in interactive computing.

2. Background

Definitions of visual language have taken
many forms. Some workers have taken a
formal mathematical approach [8, 23].
Mackinlay, for example, used first order
logic to define a formalism for working with
presentation graphics [36]. The notable
works of Card and Reisner use task action
grammars to describe interactive systems
[12, 44]. Such formal definitions of visual
grammars do not necessarily afford a work-
ing definition or feeling for visual language.

Chang wrote a tutorial on visual language
which used an operational approach to clas-
sifying visual languages, describing them
relative to what they do. The tutorial draws
on a broad range of sources [16]. Chang
segments visual languages into:

e languages that support visual inter-
action

e visual programming languages

visual information processing languages

e iconic visual information processing
languages

The tutorial describes a number of systems
that fit into each of these categories.

Selker, et al, built a framework for compar-
ing systems with visual interfaces [51]. The
framework guides a person to consider the
following aspects of an application:

o the visual elements used in an interface

e their domain of application

e the relationship between the interface
and system functionality

Background

e the expressive power of the interface

the interaction style and mode

o the visual interface's relationship to
other visual interfaces

The framework helps describe interactive
systems with visual interfaces.

The visual elements described in Selker’s
framework serve as the basis of a visual
language and the topic of this chapter.
Bertin made a vocabulary for the elements
of Diagram, Network and Map visual lan-
guages:

Marks: points, lines, areas.
Positional: 1D, 2D, 3D.

Temporal: Animation.

Retinal: color, shape, size, wvalue,

texture, orientation.

This chapter expands Bertin's Graphical
Vocabulary for Diagrams, Networks and
Maps. Bertin's retinal properties are refined
below to correspond to experimental
psycho-physical research results. His marks
and positional properties will be expanded
as well.

This chapter refines the definition [49] that

the visual elements of a language are the
graphical alphabet, interaction alphabet,
graphical syntax, interaction syntax and
structure of that language. These elements
define the language and must be analyzed
as part of its design. [51].

3. Graphical Alphabet

Visual language is the systematic use of
visual presentation techniques to convey
meaning. A visual alphabet is made up of
a set of spatial and temporal “characters”
used in a visual language; iconic systems
and visual objects have similar definitions
(16, 39). The following visual alphabet
taxonomy draws on previous studies
[9, 27, 35]. Visual alphabets are made up
of images, icons and symbols.

o Images are derived from photos,
digitization or projections. Chang and
Lodding describe representational im-
agery as images derived from photo-
graphs, degraded photographs or
drawings [16, 35]. Fred Lakin's “yisual
parser” allows shapes to be interpreted
as meaningful language elements in a
visual grammar [34].

o Icons are symbols with physical world
referents [9, 16, 27, 30, 33], stylized re-
presentations of objects or processes.
For example, the fork and knife icon
connotes a place to eat. '

o Symbols are drawings of arbitrary de-
sign [35]. The character “a” is an ex-
ample of a symbol. These are labels
with no a priori referent.

Images, icons, and symbols have Surface
Characteristics, which include the
perceptually separable and salient dimen-
sions of color: hue, saturation, value and
texture [38].

o Hue, saturation and value define dimen-
sions for color. These are often used to
convey information; stop and caution
are typically depicted by red and yellow,
respectively.

e Texture can also convey information. It
is often used to differentiate obscured
jtems in a menu or windows on a
screen. Textures on computer inter-
faces, like textures on wall paper, are

Graphical Alphabet

composed of images, icons or symbols
(Figure 37). Halftoning, for example, is
a process that uses dichromatic texture
to recreate gray-scale images. A grid
of dots gives the illusion of a gray-scale
image (Figure 1). Light areas are de-
picted with small dots and dark areas
are depicted with large dots.

Figure 1. Halftoning

We call the process of applying surface
characteristics to alphabetic elements ren-
dering. Rendering is the technology and
approach used to present a visual language.
Techniques for rendering include drawing
with with vectors or polygons. Layout lan-

guages such as Press [55], PostScript [2]

and Movie-BYU [1] are languages for ren-
dering. The techniques and practices of
rendering are what we most often think
about as Computer Graphics. The impor-
tance of these techniques motivate us to de-
vote the following section to its description.

A Guide to Graphical Ren-

‘dering

Contemporary computing systems, even the
smallest, can draw pictures that are suffi-
cient for almost all information display
needs. An overview of some various types
and styles of computational renderings will
be presented as a guide to the possibilities.

MAGNETIC
DeFLec 7100/ co4y

£PaT
conTROLLED BY
. COMPUTER, BEAMm
Figure 2. Computer Graphic screen.

The screen is bright where
electron beams strike flu-
orescent coatings inside the
display tube. The electron
beam scan is deflected by
magnetic fields, intensity of
the beam is set by a control
voltage. Computer displays
are standardized so that
computer users do not have
to worry about display de-
vices but only x and y coor-
dinates and the pixel

intensity.

Gray Scale Rendering

We introduce rendering by starting with
images attempting to mimic photographs.
Below is a picture of a mannequin head,
Figure 3. A real head would have been too
detailed to be shown here. This picture has
been derived from a digitized image. A
digitized image is the recording of light
through a camera where the light intensities
are converted to computer readable form.

A Guide to Graphical Rendering

Image data is usually stored in a rectangu-
lar pattern where the x and y dimensions
are known. The data for Figure 3 is 256
pixels by 256 pixels or 65,536 pixels.

Figure 3. A picturé of a human head.
This picture was calculated

from a digitized image.

A pixel is a picture element and for an im-
age it is the value measured at a single light
spot. In order to print the picture of the
head it was necessary to calculate the spac-
ing of black and white dots to simulate the

variation of light intensity recorded by the

digitizing camera. This technique of repres-
enting grayness is called dithering [61]. The
computer program that calculates the spac-
ing of the black dots does not know any-
thing about the subject of the image. If the
result is recognizable it is the the human
mind wanting to recognize something and in
some way making sense out of the gray pat-
tern. '

Figure 4. Recording image data. A
video camera is focused upon
the subject. The image de-
tected by the camera is con-
verted to computer readable
numbers by a digitizing
processing board in the com-
puter. These numbers are
written directly into com-
puter memory. The pixel
values are stored by the
control program in a rectan-
gular pattern corresponding
in size and arrangement to
the camera view. X is the
width of the image and Y is
the height. After digitizing
the image data can be proc-
essed like any other data

stored in a computer.

While we see and conceptually and emo-
tionally understand images [28], most often
real world images are too rich for analysis.
One way of reducing the information is to
make a thresholded image. To produce such
an image, any pixel with a measurement
above a threshold value is set to white, or
the maximum value, and all others are set
to black, or the minimum value. The next
picture, Figure 5 is a typical result. The
border between the black and white areas
shows where the data is at the threshold
value.

A Guide to Graphical Rendering

Figure 5. Thresholded image data. In
some places the border be-
tween black and white areas
is smooth and in other places
the border is rough. Texture
in the subject of the image
together with noise in the
recording equipment caused

this “roughness”.

Even thresholded images may be too com-
plex for mathematical analysis. The next
picture, Figure 6 on page 6 shows the result
of a rather simple image operation, edge en-
hancement, which further simplifies the
data. The contour of a region can be found
by replacing pixel values with the differ-
ences of pixels and their neighbors. Any
pixel surrounded by pixels of the same color
has no differences and are set to zero or
black.

The following picture is a typical result. The
broad contour line can be further processed
to produce a sharper outline. This ex-
traction of lines or curves from an image is
called edge detection [5]. By such tech-
niques the amount of data that might be
processed is reduced and organized.

Figure 6. A contour curve on &

thresholded image.

Rendering Computer Generated Data

Images can originate not only from digital
camera measurements but can be generated
from an arbitrary graphics algorithm or data
sot. The next image is the result of a cal-
culation in an imaginary three dimensional
space. A mathematical model of a shape is
assumed, the source of light illuminating
light at every image pixel is then deter-
mined. To do this, take each pixel one at a
time. Find which surface lies behind this
pixel and exactly what point on the surface
lies behind the pixel. Then find how much
light falls on this spot in space. If desired,
it is also possible to determine how much
light was reflected upon this spot in space.
If the surface is assumed to be on an object
of some transparency, then the refracted
light can be calculated. The picture shown
below, Figure 7, is of spheres in space in-
cluding calculations for incident and re-
flected light. Such pictures can be thought
of as artificial photographs. Because the
history of light is explicitly calculated along
lines or light rays in space, this process is
called ray tracing [21].

A Guide to Graphical Rendering

Figure 7. A ray tracing. An artificial
photograph 1s calculated
from the illumination by fol-
lowing the reverse history of

light to the light source.

A question may be raised about ray tracing:
Why follow the reverse history of light from
the viewer to the object? Would it not be
more direct to follow light rays and their il-
lumination effects from their source? For
moderately ambitious ray tracing, it is more
economical to trace the history of light in
reverse since very few light rays actually
contribute to the artificial image, but for the
most realistic renderings where subtle illu-
mination effects are to be shown, the com-
plete history of light in the virtual world is
needed.

In the printed picture of a human head,
Figure 3 on page 4, dithering was under-
taken so that the picture can be printed.
Images are best shown on computer displays
capable of drawing spots of different grays
like a television receiver, but dithered pic-
tures of some sort are needed for printing
grays with black ink.

The strategy of producing the renderings
shown so far was to take an array, a rec-
tangular pattern of values, and convert this
array to a dithered pattern of black and
white dots. The pattern could then be
printed for the purpose of reproducing this
document, or displayed on almost any com-
puter screen. This dithered pattern, or any
rectangular pattern which is a complete
displayable entity is one of many possible

bitmaps or pixelmaps. The word bitmap
originates from the engineering of computer
displays where every display spot corre-
sponds to one or more storage bits in com-
puter ~memory. The word pixelmap,
sometimes abbreviated to pixmap, comes
from the notion that a computer display
shows a pattern of pixels and that this pat-
tern can be treated as a total entity in
computational operations. An image is a
rectangular arrangement of measurements
or values, and is shown to an observer by
converting it to a bitmap or pixelmap. Fre-
quently the nouns “image”, “bitmap”, and
“pixelmap” are used synonymously. Except
for those instances when the conversion
process is the subject, this should cause no
problem.

A bitmap is converted to a pattern of glow-
ing points shown on the display screen. The
overall process is to convert computer
memory to a picture. When the memory is
changed, the picture is changed. The
change of display pictures by changing com-
puter memory is called bitBlt [22]. Aes-
thetic and perceptual goals motivate
designers to make the bitBlt operations run
fast and efficiently. The viewer should not
be aware that the memory is actually
changed bit by bit, memory location by
memory location. Satisfactory bitBlt oper-
ations such as move, copy, and change color,
could not be used until computer circuits
and memory control programs attained suf-
ficient speed. With high speed bitBlt, the
impression is given that unified rational
sections of the screen change.

A common bitmap operation is the reversal
of a bitmap for printing. Generally, a bitmap
for computer screen display has a maximum
value, maybe just 1, for those pixels which
should be white, and a minimum value for
those pixels that should be black, always 0.
For black ink printing, black pixels are al-
ways 1, and white pixels are 0. Reversal of
a bitmap then is the conversion of the
bitmap values. A second bitmap operation
is pixel replication. The illustrations in this
chapter were generated and displayed on a
computer, the pixels on such displays are
rather large and have the characteristic that
white pixels look bright. Printed pixels are

A Guide to Graphical Rendering

comparatively small. The black pixels that
dominate. In order to protect the quality of
the illustrations the printed versions repli-
cate pixels, each display pixel is replaced
with a pattern, usually 2 by 2 or 2 by 3, with
the same value as the original pixel. The
new pixmap is now much larger than the
original pixmap computational operations on
images, Highly interactive displays, such as
video games, where bitmaps are manipu-
lated, look extraodinary but have special
hardware support to “render” these compu-
tations tractable. Workstations with multi-
ple windows and interactive application
displays are essentially controlled by the
bitBlt screen management programs that
keep track of what set of which bitmaps are
to be controlled at what time or in response
to what user action. The text shown on a
screen consist of small bitmaps that have
the shape of character fonts.

Rendering Data Sets

Images need not be digitized from life or a
virtual world. The next picture, Figure 8
on page 8 shows a typical image which is
the result of a two dimensional calculation.
In this image, three sine wave functions
were added together, and after rescaling to
a range from zero to 100, the two dimen-
sional pattern of values was used to produce
the dithered picture shown here. In this
picture, the two horizontal cycles and the
two vertical cycles can be easily seen
superimposed over the more complex pattern
originating from the lower right corner.
This demonstrates that for large two dimen-
sional data fields, data image displays are
very effective.

As with images from real life, sometimes a
grayscale presentation is too complicated to
be easily understood. Simplifying the image
can make it easier to interpret. The follow-
ing image was made with false coloring.
Image values were converted from a large
range of values to a smaller range of values
or maybe just a different range of values
like the thresholded picture shown in
Figure 5 on page 5. In Figure 9 on page 8
image values below 34 were set to black
(new value 0), image values between 34 and
66 were set to gray (1) and image values
above 66 were set to white (2). After

dithering, the final bitmap was obtained as
shown. The result consists of a contour map
which is easily interpreted.

Calculated data image, in
this case the sum of three-
two dimensional sine waves.

A false color image derived

from the previous illus-
tration. In this picture,
pixels within specific ranges
of value were rendered

white, gray, or black.

A Guide to Graphical Rendering

Rendering To Enhance Interpretation

Digitized real world images are difficult to
analyze. When we look at a real world pic-
ture, such as Figure 3 on page 4 of a human
head, the subject is recognized, contours can
be deduced and maybe we can estimate the
direction in which surfaces are orientated,
but it is very difficult. The subject of Fig-
ure 10, a cube was especially designed to
facilitate this exercise in image processing;
the faces were covered with white tape and
the edges were painted black. After
digitizing the cube, the image was thresh-
olded, and the white background was re-
moved resulting in the image shown in
Figure 11 on page 9. It was easy to remove
the background since it was separated from
the cube by the black edges painted on the
cube. Edge detection in image data is the
topic of the field of image understanding

[5].

Figure 10. Black painted edges on
white cube.

Figure 11. A thresholded display of an
image similar to Figure 20
on page 12. The difference -
in proportion is due to the
difference in aspect ratio of
the computer display x and
y pixels and the digitizing
camera pixels. The back-
ground was removed to al-
low the faces and front
edges of cube to remain.

The preceeding image which shows the iso-
lated frontal edges, contains some noise, but
the edges can be identified and the lengths
of the three edges can be estimated. If the
projective distortion is ignored, the angles
of orientation can be taken to be a function
of the lengths of the three frontal edges.
Figure 12 shows the estimated end points of
the frontal edges with small circles. Obvi-
ously, the calculation is not perfect. In order
to verify the qualitative result, a small pic-
ture of a cube has been drawn at the esti-
mated orientation. The value of Figure 12 is
not that the problem of determining orien-
tation has been solved, but that the process
can be observed and evaluated, and possibly
improved. The screen display becomes a
graphical workbench: the data of the exper-

A Guide to Graphical Rendering

iment is on the left, and the result of the
calculation is on the right.

Figure 12. Measurement of edges.
Circles show the calculated
extents of the frontal edges.
The ratio of the lengths of
these edges allows the ori-
entation of the cube to be
calculated. A line drawing
of a cube has been made for
comparison with the ori-
ginal picture.

Drawing Planes in Space

A classic problem of computer rendering is
to show structures. Such objects, in the
simplest possible topology, consist of
bounded planes in space. The planes may
have no thickness but these bounded planes,
like the spheres shown in Figure 7 on page
6, are assumed to emulate real material in
space. The data structure required consists
of a vertex list, that is a table of labeled
points in space with their x,y, and z values,
and a topological map; that is how these
points are connected together to form planes
defined by straight lines in space.

PoINT LABELS
‘T__:o_P__a_L——og-—-: A
sugFrace 1: ,9104
i SURFACLE -2: 2,3,7.6

-

oBJECT 2 {g,gmce Cilly14,12y16

Figure 13. Three dimensional scene
creation. A sketch is pre-
pared showing vertex
points. A vertex list is

made where the three di-
mensional coordinates are
listed for each point. The
topology is specified by in-
dicating what points form a
polygonal boundary, and
which surfaces compose an
object.

A perspective projection can now be made
of this subject. Examples are shown in Fig-
ure 14. In these pictures the position of the
viewing eye has been changed to obtain dif-
ferent projections. The style of rendering is
called a wire frame because the lines which
outline the bounded planes resemble glowing
wire filaments in space [43].

Figure 15. Closer view of the
wireframe house. Notice
the increased divergence of
lines.

Figure 14. A wire frame rendering.

A Guide to Graphical Rendering

Figure 16. Lower angle view of the
wireframe house.

This next picture, Figure 17 on page 11,
shows the scene when an effort is made to
increase the sense of solidity. The artistic
and computational device used assumes that
the surfaces that compose the scene are
opaque and hide anything that is behind
them. The procedure of determining which
lines should not be drawn is called hidden
line elimination.

Hidden lines removed on
view of the wireframe house
as if the surfaces of the
structure are opaque.

Figure 17.

Figure 18. Hidden lines dotted on view
of the wire frame house im-
proving the sense of spatial
dimension.

Hidden line elimination can be accomplished
in many ways. The popular technique used
here is called painter's algorithm [46] be-
cause it duplicates what happens when a
painter colors over a previously painted re-
gion. The new paint covers the old. This
method works by drawing surfaces, one at a
time, from the farthest to the closest. Im-
mediately after a plane is drawn, it is filled
in with blackness. Any previously drawn
line segments behind a projection of a plane
are erased. Figure 18 illustrates a variation
of hidden line elimination: after all bounded
planes have been drawn with proper visibil-
ity, another wire frame drawing is made
with dotted lines. The result consists of two
types of lines, solid to indicate visibility and
dotted for lines that are hidden by a plane.
The sense of space and structural content is
improved.

A Guide to Graphical Rendering

This data structure allows individual scene
components to be manipulated. For example,
in the following picture, the points that de-
fine the roof were translated in three di-
mensional space vertically, thus raising the
roof.

Roof defined as a separate
object. It can be distin-
guished by vertical trans-

Figure 19.

lation.

Showing the dotted lines usually improves
perception. This series of pictures illus-
trates that a line drawing can define struc-
ture as well as position. These pictures of a
house were drawn using perspective
projection, which emulates the geometrical
distortion of natural vision. The further an
object is from the viewer, the smaller it will

appear [24]. Unfortunately perspective line
drawings distort everything. If the subject
of the last few pictures were not a familiar
object, (a house), the pictures might not be
understood.

Figure 20. Hidden lines dotted in a

house with a separate roof.

Floating Horizon Rendering for Surface
Patches

The next seven illustrations demonstrate a
very important rendering tool called floating
horizon. This technique is probably the most
common method of establishing spatial order
in three dimensional pictures. It is compu-
tationally fast and easily programmed [65].

Assume some data has been generated or
measured that can be organized along a two
dimensional order such as is shown in Fig-
ure 21. This figure shows the data in an
isometric projection, which will be described
later, with no obvious structural or depth
clues. The data is organized on a checker-
board pattern, I, J, where I increases along
the x direction, and J increases along the y
direction. It helps considerably if the data

A Guide to Graphical Rendering

is plotted as patches in space such as in
Figure 22 on page 13 but the absence of
depth clues makes this picture ambiguous.

Figure 21. Data displayed spatially.
The vertical alignment is a
result of the isometric
projection used.

Isometric projection is very easily drawn by
hand or computer [25]. The calculation
goes like this: let px represent the screen'’s
horizontal coordinate and py represent the
screen's vertical coordinate. Let x,y, and z
be the three dimensional coordinates of a

point, let cos be the cosine of 30 degrees

(.866) and let sin be the sine of 30 degrees
(.5). To calculate px and py:

px = cos (x-y)

py =sin(x +y) +z
Generally a dot can be drawn on the screen
at the location px,py to represent the point
X, ¥, 2. To do so on most display systems,
however, requires scaling to fit the screen
coordinate system. This scaling of data is
usually done by software provided with the
computer system.

Figure 22. A wire frame drawing of the
same data. Lines connect
points along the I and J or-
der or along x=constant
and y =constant curves.

J Rulings with end edges

Figure 23. Floating horizon rendering
of same data. The silhou-
ette envelope consists of a
J ruling with sections of an
I ruling as end connectors.

The technique of floating horizon requires
that a scene be drawn in closed patches, just

like one of the patches in Figure 22, and

that these patches be drawn in increasing
depth. Data such as is shown in Figure 22
is easily drawn in increasing depth because
the data indexing is inherently so ordered.
The data is organized along I and J ad-
dressing so that if the data is accessed by
increasing values of I and J, it is fetched in

A Guide to Graphical Rendering

increasing depth. As each patch is drawn,
an obscuring silhouette envelope 1is con-
structed -such that any point that falls
within this silhouette will not be drawn.
Any point that is drawn must be outside,
above or below the silhouette, and upon this
point being drawn, the silhouette is updated.
Since patches consist of lines, these lines
must be drawn as individual dots. Each dot
must be compared to the maximum and
minimum values of py for each dot value of
px. When the picture is started there are
no (or some) default values of minimum py
(lower horizon) or maximum py (upper hori-
zon), but as the picture progresses, these
tables are continually changed. All that is
needed is a function to decompose a line
into individual screen pixels and a table
lookup and update. Once such a function is
available there is some artistic freedom for
making the picture.

The next five illustrations were all drawn
using floating horizon. The only difference
between them is the design of patches or
obscuring envelopes. If it is desired to draw
the surface from differing viewpoints it may
be best to reorganize the data because the I
and J indexing is used to provide depth in-
formation.

snas .

SLICES

Figure 24. Sliced rendering. The ho-
rizon envelope is an imagi-
nary slice bounded by a J
ruling.

Isometric projection has some well known
advantages. When such a projection is plot-
ted by hand, x coordinates can be drawn or
measured along a thirty degree line on the
paper, y can be drawn along 150 degrees,
and z can be drawn vertically at 90 degrees.
All three coordinates can have the same
scale factor. Calculation of isometric
projection has been shown above. Since the
days of hand drawing and continuing into
our time of computer rendering, isometric

1 1d I ralings pictures have been very popular because
distortion is minimal, regular, and well un-
Figure 25. Surface rendering. The ho- derstood. A simple means exists to actually
rizon envelope is a patch measure the picture, and depth-is easily

formed by I and J rulings. - perceived.

Floating horizon can be used with perspec-
tive projection or any other projection.
Painter's algorithm could just as well have
been used to prepare the last five illus-
trations. Floating horizon and isometric
projection are usually used for complex sur-
faces that are derived from a large amount
of data.

Rendering to Emphasize Structure

All the renderings made so far assume some.
sort of overall structure or order for the
data being displayed, either indexing or .
topology. This is not always possible; the
Figure 26. Base added to the same next series of pictures demonstrate what can
view. be done when no obvious structure exists.
Assume that some x, y, z data has been
provided. Figure 28 on page 15 might be the
first graphical attempt. The points are
plotted above a base plane with no depth
clues. This is not a bad idea since we might
first have to make up some scale factors or
at least program some automatic scaling
functions. Rendering something quickly is
useful when drawing unfamiliar data. The
projection scheme used is called oblique
[26]. It is suitable for those instances
where we know very little about the data.

1 and J rulings ¢+ base

1 and J ralings on salid

Figure 27. Side horizon envelopes on
the same view to create the

L illusion of a solid.

A Guide to Graphical Rendering

QO @0
O
OO%

NG

Figure 28. Data floating above a base.

As a first effort to make sense of things we
could sort the data points in space and per-
form a minor painter's algorithm by doing a
selective area erase within each plotted cir-
cle as it is drawn. Now we can present
depth cluing. In an oblique projection the
depth sorting need only sort along the di-
mension that goes into the picture, in this
case the y coordinate.

Q @0
O
O O%%o

Figure 29. Data drawn in reverse order
of depth, each circle
occludes space behind it.

In order to provide some structure and to
make the depth of the circles more obvious,
lollipop sticks can be drawn as in the fol-
lowing picture.

A Guide to Graphical Rendering

. spheroid.

Figure 30. Lollipop sticks to indicate
the projected x and y coor-

dinates.

The next embellishment used to enhance
depth is called haloing, and is very simple
[3]. To halo a graphical element is to out-
line it in the background color. This em-
phasizes the difference in depth nicely if the
graphical elements are sorted in depth. The

_circles in the following picture are outlined

by black circles, then the lollipop sticks are
drawn as three lines: two lines in black
surrounding one in white. Notice how the
haloing sacrifices a bit of resolution for the
improved illusion. The preceding lollipop
plot is probably sufficient for a quick look
or a rapid presentation of unstructured data.
The next few illustrations demonstrate eft
forts to make sense of the data or find a
unifying structure. The structure most com-
monly hoped for is a mathematical equation.
If an equation that fits points can be found,
the data can be summarized with the
equation and possibly a fundamental truth
can be asserted. In the next picture,
Figure 31 on page 16, it is assumed that the
data lies on the surface of an oblate
If a series of curves on the
spheroid were to be plotted in the oblique
projection, the picture would appear as
shown.

Figure 31. Suggesting data envelope
with an added surface.

By drawing the surface, the envelope of data
and the surface seem to coincide. Next, in-
dividual curves can be drawn to see if they
pass through any of the data points. A spe-
cial result might take place as shown in
Figure 32, where one curve passes through
four data points. :

Figure 32. Curve on the surface.

Finally, the entire surface may be drawn as
a set of curves subject to the haloing of the
lollipops. This is organizationally more com-

A Guide to Graphical Rendering

plex, but is not difficult. It can be seen that
the surface of the oblate spheroid passes
through the centers of several data points
and on a particular section drawing of the
spheroid, three data points in particular lie
on a curve of the spheroid.

Figure 33. Section drawing of the sur-
face.

This picture presents highlights the re-
lationship of the data to a surface. The data
points are well defined in space, the surface
passes through the data points, the section
is well defined and the lollipop sticks define
the x and y coordinates. The value of ob- -
lique projection is also used; an oblique
projection offers no distortion on planes -
parallel to the screen, bringing out the true
shape of curves parallel to the screen or in
the x,z planes. In particular, the last picture
shows the shape of the elliptical cross sec-
tion.

It is unfortunate that it is not possible to
cover all topics or techniques of graphical
display. This section on rendering has cho-
sen -to give examples covering major tech-
niques of presenting pictures graphically.
For a more complete description of the field
refer to [21] :

4, Visual syntax

To interpret a picture or graphical presen-
tation rendered, visual alphabet "characters”
are parsed for their meaning by the viewer
or program. It is evocative to draw parallels
between visual syntax and natural language
syntax. The inherent serial nature of na-
tural language relative to the inherently
spatial structure of visual language makes
the notions of parsing and statements quite
different. Natural language relies on arti-
cles, prepositions and punctuation for delin-
eating structure and context. Visual
language, on the other hand, quite naturally
uses spatial structure to represent the con-
text in which information is interpreted.
Linguistic terms are used in this chepter
solely as points of reference.

Visual parsing distinctions can be separated
into syntactical categories:

e positional

o size
e time
e rule

Positional - Positional syntax refers to the
use of spatial relationships between visual
elements which convey information to the
observer. These relationships are recognized
in the parse of the language. These include:

o Relative Positional relationships:

o Sequential - The spatial sequence of
objects denotes an order in which
visual elements should be consid-
ered. Written languages use se-
quential syntax, words follow each
other left to right and top to bot-
tom. Sequential languages can use
space differently. Cartoon frames
are often arranged on a line or col-
umn (Figure 34).

e Metrical - Measurement' is used to

denote relative value. Plotting a
function uses metrical syntax. Plots
using polar, cartesian, projected 3-D
and logarithmic scales are examples
of metric coordinate spaces. A
metrical syntax could use position
on a B-spline as its metric. Graphs
and bar charts use a cartesian co-
ordinate system to relate two di-

mensions of information

(Figure 35). c

Orientation - Angular relationships
between visual objects can drive a
visual parse as well. In the case of
three dimensional models for exam-
ple, rotation presents a view of ob-
jects or & scene. A rotation of 180
degrees along the horizontal or ver-
tical axis would result in a view of
the far side (rear) of the object.
For an analog clock, the orientation
of the hands with respect to the
dial indicates the time of day.

Figure 34. Sequential Positional Rela-

tive

Figure 35.

Metrical Positional Relative

e Interacting Positional relationships:

Embedded - Spatial enclosure or
geometric containment is often used
to define a visual statement. Ex-
amples include text balloons in car-
toons (Figure 36). VennLisp is a
programming - language using an
embedded notation [34]. A program
is defined by positioning hollow
language key symbols inside of each
other. Evaluation in VennLisp pro-

ceeds from the outside of the dia-
gram inward.

Figure 36. Embed Positional Interact-

ing Syntax

Intersecting - Partial or total spatial
overlap of visual objects is another
popular way of presenting visual
statements. In electrical circuit di-
agrams, the intersection of straight
lines at right angles indicates con-
tinuity in the circuit. Venn dia-
grams use intersecting regions, as
well as embedded syntax, to express
relationships (Figure 37). Overlap-
ping window systems often use
intersection (occlusion) syntax to
indicate which windows are active.

Figure 37. Intersecting

Positional
Interacting Syntax.

Shape - Spatial relationships, like
those found in puzzles, allow syntax
to prescribe how things can be con-
nected together (Figure 38).
Learning Research and Develop-

ment Center's Bridge system has .

pieces which fit together like a
puzzle to make programs.

Figure 38. Shape Positional Interact-
ing Syntax.

o Positional Denoted relationships:
Specifiers, such as lines or labels, indi-
cate relationships between objects.

o Connected - Arcs specify
connectivity between visual objects.
These connections specify semantic
information. = Node/arc notations
are used in computer flow charts,
electrical wiring diagrams, organ-
ization charts, etc. Stella is a vis-
ual programming language that
allows a user to draw several styles
of nodes and arcs to specify a pro-
gram [45].

o« Labeled - Spatial relationships can
be maintained by symbols. In large
circuit diagrams, spatial relation-
ships are not always seen on a sin-
gle drawing. Labeled wires are
used to refer to other drawings
(Figure 39).

position
Sequential

Figure 38. Lsabeled Positional Denoted

Size - Relative size of objects can influence
how and when component items are inter-
preted (parsing order). Catalogs often con-
tain large pictures of expensive objects,
smaller pictures for the less expensive
things.

stones and cave walls sometimes use size as

Ancient petroglyph languages on.

the organizing feature. Importance of peo-
ple and things in these languages are ex-
pressed by relative size.

Temporal - Many visual languages use time
as an organizing dimension. Computer
drawing programs use temporal information
to communicate in several ways. For exam-
ple, the order of spatial overlap can be used
to determine recency. Blinking draws the
attention of the reader.

Rule - Visual statements can be defined by
arbitrary algorithmic visual relationships.
Cursors in text editing environments are of-
ten designed to stop at the end of a line, or
wrap around to the next line.

Visual Syntax

Visual syntaxes can be combined in re-
lationships using constraints. JUNO [42]
and ThingLab [10] use “constraint” lan-
guages to define the spatial relationships
between displayed objects. Things can “at-
tract” nearby objects. Peridot depends
heavily on rules [41]. Peridot defines rules
as pairs of one way ‘relationships, rather
than mutual constraints.

The Gauges system also uses one way con-
straints [56]. The system.updates a gauge
when a variable changes. Moving a gauge
needle does not change the variable it re-
presents.

5. Interaction

To talk about interactive systems, we must
describe how a visual language's alphabetic
primitives are placed and moved in a visual
utterance. The user input language, sys-
tem's visual output language, and applica-
tion (semantics) are what a user interacts
with. Prior discussions of interaction have
ranged from interactive vs. batch [40] to the
use of direct manipulation [52]. Our classi-
fication defines “direct manipulation” as
closed-loop feedback, transparent mapping
between action and consequence, and
temporally indistinguishable response time.
Rouse discusses issues of appropriate feed-
back and response in some detail [47].

Input Syntax is the sequence of actions for
communication from a user to the system.
The output visual language described above
needs to be matched by some set of input
“utterances’. The input language syntax
ranges from concrete keyboard button se-
lection to the abstract shape or gesture.

e Keyboard Entry includes text entry and
menu selection. The keyboard entry
device may be similar to a typewriter
and includes variants such as chord
keyboards [20].

e Point and Pick is a menu selection
paradigm. Selection can be made with
a mouse, joy stick, digitizing tablet,
touch screen or other direct manipu-
lation technique. A menu allows a user
to select items from a list, labeled but-
tons, a set of pictures, or a structured
spatial display [53].

e Point and Move is a paradigm where an
object is selected and moved. Many
windowing systems allow the user to
point to an object and drag it to a new
location on the display. This technique

was first demonstrated in the Sketchpad.

system [57]. Many systems (video
games, CAD systems, etc.) use gesture,
shape and temporal movement to dictate
the “parse” of an image.

e Point and Draw is the general drawing
technique which leaves a mark wher-
ever the cursor has been. MacPaint

relies heavily on this technique [32].
Grail was the first system to demon-
strate the use of drawing in an interface
[19].

e Gesture is the use of motion through
space and time. Some mouse drivers
(i.e., X-windows [48]) use the speed with
which the mouse is moved to accelerate
cursor movement on the screen. Hand-
writing recognition systems can use
gesture recognition to interpret charac-
ters and editing commands
[59, 63, 641

Input language scenarios can be distin-
guished by feedback, response. time, and
interactivity abstraction:

e Feedback - A system can be open loop
or depend on feedback to support inter-
action. An open loop system might

simply delete a file in response to a user -

issuing the erase command without in-
dicating success. At the other extreme
is the case where a mouse responds im-
" mediately to mouse movements or a text
editor responds to each keystroke.

e. Response time is how quickly the system
responds to the user. Traditional oper-
ating system literature distinguishes
real-time, interactive-time and batch-
time as definitions for computer re-
sponse. Response time can vary from
being temporally indistinguishable to
temporally distant from an action. Fast
response in a time-shared computing
environment improves an individual's
productivity [17].

e Interactivity abstraction - A mapping ex-
ists between the user's action and the
system's response. One extreme is a
transparent mapping between user
action and system response. A rela-
tively direct correspondence between
action and response exists when a per-
son is using a screen based editor. The
computer echoes the symbols the person
types and moves the cursor around the
screen when the arrow keys are
pressed. The other extreme is a discon-

1 Handwriting can also be analyzed through image interpretation techniques.

Interaction

tinuity between user actions and system when a person types on a command line

responses. This is typified by batch and and the computer responds with a mes-
command line interfaces. An indirect sage elsewhere on the screen.
correspondence exists in a text editor

Interaction

6. Visual Language Composition

We tend to think of visual interfaces as ho-
mogeneous. In reality, these interfaces are
composed of heterogeneous interacting vis-
ual languages. Menus are often augmented
with direct manipulation techniques such as
text entry. Recognizing how languages are
used for different purposes in a visual inter-
face is part of visual language design. Use
of separate visual languages in a system can
segment function, perspective on informa-
tion, type of manipulation or system struc-
ture.

Structure pertains to the segmentation of
activities and commands. A typical text ed-
itor has several visual languages in its
interface (Figure 40). The text area uses
direct manipulation for positioning charac-
ters, words and blocks of words with a cur-
sor. A ruler at the top of the window
(borrowed from the typewriter) changes ap-
pearance as a user types in the text area.
A set of commands can be accessed via a
menu or command line.

The highly moded structure of the text edi-
tor can be held in contrast to the program
interpreter for the language BASIC. A
BASIC interpreter typically has only one
visual language and one set of commands
and functions in its interface.

Coverage of the language is described by
Shu as one of three dimensions for classify-
ing visual languages [54]. Coverage ranges
from special to general purpose. A special
language might be a notation for describing
organic chemical bonds in a interactive
chemistry set program. Other aspects of the
interface may include menus and drawing

Visual Language Composition

tools. Conversely, a calculator shows all the
system’'s functions with a single language
and interface.

The LOOPS system uses a structured icon
to present all of its functions [56]. By
choosing various parts of the icon, a user
accesses various subsets of its capabilities
(Figure 41). An instrument is chosen to
view and change a variable in a program.
When an instrument, such as the pitcher, is
chosen, the coverage of the instrument is
one variable, not the whole program.

RN
The takdogain \
\ ler

text area

command line

—

Figure 40. Text editor ‘

Figure 41. Instruments

7.Visual Language Revisited

By separating elements of visual language
embodied in computer graphics, this chapter
has set forward a framework for u~‘er-
standing the parts and use of computer
graphics. Any use of computer graphics has
the following parts:

Visual Language Revisited

Visual Alphabet - building blocks of a vis-
ual language.
Images photos
Icons caricatures
Symbols designs
Surface color, texture
Rendering presentation techniques
Visual Syntax - creating graphic state-
ments
Positional spatial graphic relationships
Relative sequential, metrical, ori-
_entation
Interacting embedded, intersecting,
shape
Denoted connected, labeled
Size size graphic relationships
Temporal time graphic relationships
Rule defined graphic relationships
Interaction - input language matching the
presentation language
Input syntax keyboard, point & pick,
point & move, point & draw, ges-
ture
Feedback system response, response
time .

Abstraction relationship of user input
to system's output language
Structure - graphic sub-languages, inter-

action sublanguages.

This structure can be used as a basis for
creating graphic computer interfaces.

(

8. Computer Graphics Aids For Statisticians

As the elements laied out suggest, a com-
plete use of graphics integrates many utili-
ties to simplify the user's work. ‘Tne
alphabet in which data is rendered, the syn-
tax of how it is to be interpreted and, the
interaction language the user relies on all
work together. Available software accom-
plishes various integrations of tools. This
section is a brief view of applications,
graphics techniques and software which
statisticians can use to do their work.

Graphing

Graphs in cartesian coordinate spaces are
traditional and powerful analysis tools.
Computer software packages enable workers
to plot data sets to quickly see trends with-
out having to look at each particular datum.
Since they can be generated quickly, if the
statistician does not like a particular type
of graph he may choose to look at another
type, such as cartesian plots, scatter plots,
bar charts or pie charts. Even business
personal computer spreadsheet systems like
Microsoft’'s Excel or Javalin [7] make these
tools available. Tools are available that al-
low one to view their data as a bar chart,
pie chart, or scatter plot, as well as many
others.

Rendering data three dimensionally as de-
scribed above allows the statistician to view
data from various angles. Many sophisti-
cated modeling and visualization software
packages are available. Programs like
MacSpin [18] allow a user to view a set of
data convolving and to separate parameters
into spatial dimension. For more informa-

tion, see "The Elements Of Graphing” [13].

Colorising

Colorising differentiates data. To compare
two or more sets of data one might plot the
graphs of them on the same coordinates in
different colors. This would allow a quick
visual determination of the possibly subtle
differences among these sets. Colorising is
a common mechanism for representing data.
For example color is used in maps, seismic
data, and landsat pictures. Mathematicians
use color to represent a third dimension on

Computer Graphics Aids For Statisticians

a two dimensional plot when viewing phe-
nomena such as chaotic functions. ~

Mathematics + Graphics = Analysis

Integrated analysis packages like
MAXIMA[58] and SAS[31] are examples of
early successful analysis packages which
use analysis to facilitate understanding of
data. The more modern MATHEMATICA and
S packages integrate graphing as an ele-
mentary analysis technique. The ‘S’ Lan-
guage is a a programming environment for
data analysis and graphics which includes
many commands to make graphics easy for
the statistician [6]. For example, S provides
commands such as PLOT
(CORN.RAIN,CORN.YIELD) which produces a
scatter plot of the two sets of data
CORN.RAIN and CORN.YIELD. If the statisti-
cian is not satisfied with the results of this
graph she might try
PLOT(CORN.RAIN,CORN.YIELD,LOG="Y") which
yields a graph with a logarithmic transfor-
mation of the y axis.

Many statistics software packages exist
even in the inexpensive PC computer mar-
ket. A comparison of these can be found in

PC Magazine [37]. A less market oriented -

source is "Graphical Mehtods for Data
Analysis” [14].

Alternative Presentations

Books like Tufte's “The Visual Display Of
Quantitative Information” [60], report
achievements using specific views of data
for gleaning specific knowledge. Some
graphing packages include features which
allow comparison of various presentation
techniques and alternative presentation
views.

Graphics Packages

Two dimensional and three dimensional
graphics packages such as the early
Movie-BYU have been available for some
time [21]. These can be used to display and
analyze data sets that don't necessarily need
to be physical world data. Modern render-
ing engines are starting to come equipped

with visualization software like Stellar's

AVS system [62].

Graphics Aids Statisticians
Can Look Forward To

Interactive Realtime Microworlds.

Computers are now capable of manipulating
complex images at speeds which allow
interactivity and animation. Proposed vi-
sualization techniques allow data to be dis-
played as an image that can be explored as
though it were a place.

New computer scenarios will allow users to
interact directly with such physical models.
They will be able to change things possibly
by pressing on a (virtual) wall or moving a
support, and see the stress or other impact
interactively.

Computer Graphics Aids For Statisticians

Seeing large Data Sets

Mechanisms for searching large and multi-
dimensional data sets are emerging such as
the Xerox ROOMS metaphore [11], and IBM
Room With a View metaphore [50].

Automated Presentation

A wealth of representations are becoming
available. As the value of the methods in
the framework described in section one be-
comes rationalized, we will come to have
software which can aid us further in pre-
senting data. A first step in this direction
could be an Artificial Intelligence approach
to Automatic Design of Graphical Presenta-
tions [36]. In the future systems will de-
scribe trade-offs in presentation schemes.
They will choose and modify prsentations to
enhance analysis. We can look forward to
highly interactive three dimensional stereo
environments in which the computer will
work with us to cull and understand data.

9.Acknowledgments:

Special thanks to Larry Koved for excessive
help on previous versions of this chapter.
Thanks to Ellen Shay, Kevin Goroway and
Chandelle Vuolo for important editing work.
Thanks all the attenders of the Visual Rep-
resentation and Epistemology of Presenta-
tion Seminar Series.

Computer Graphics Aids For Statisticians

Bibliography

10. Bibliography

[1] ACM, editor. Status Report of the
Graphics Standards Planning Com-
mittee of ACM/SIGGRAPH.
in ACM, editor, Computer Graphics,
11(3), Fall 1977.

[2] Adobe.
PostScript Language Reference Man-
ual.
Addison-Wesley Publishing Company,
Inc., 1985. '

[3] A. Appel, F. d. Rohlf, and A. Stein.
The Haloed Line Effect for Hidden
Line Elimination.
SIGGRAPH, 13(2), ACM, NY, Au-
gust 1979.

[4] R. Arnheim.
Visual Thinking.
University of California Press, 1969.

(5] D. H. Ballard and C. M. Brown,.
Computer Vision,, pages 143-146.
Prentice-Hall, NJ, 1982.

(6] R. Becker, J. M. A. Chambers, and A.
R Wilks.
The New S Language.-
Wadworth &Brooks/Cole, CA, 1988.

[71 J. Bernoff, E. Brout, and J. Waldron.
Javelin.
Javelin Software Corp., 1985.

[8] J. Bertin.
Semiology of Graphics: Diagrams,
Networks and Maps.
The University of Wisconsin Press,.

1983.

[9] C. Bigelow and D. Day.
Digital Typography.
Scientific American, 249(2):106-119,
August 1983.

[10] A. Borning.
Thinglab - A Constraint-Oriented
Simulation Laboratory.
PhD thesis, Stanford University,
1979.

Bibliography

B E L LBl e T o Sl il wwges = =

[11] S. K. Card and D. A. Henderson.
Catalogues: A Metaphor For Com-
puter Application Delivery.
Interact'87, pages 959 - 964, North
Holland Amsterdam, September 1987.

[12] S. K. Card, T. P. Moran, and A.
Newell.
Psychology of Human Computer
Interaction.
Lawrence Erlbaum Associates, 1983.

[13] J. M. A. Chambers.
The Elements Of Graphing..
Wadworth &Brooks/Cole, CA, 1983.

[14] J. M. A. Chambers, W. S. Cleveland,
B. Kleiner, and P. A. Tukey.
Graphical Methods For Data Analy-

sis..
Wadworth &Brooks/Cole, CA, 1985.

[15] S. Chang.
Visual Languages.
Plenum Press, 1987.

[16] S. Chang.
Visual Languages: A Tutorial and
Survey. y
IEEE Software; pages 29-39, 1987.

[17] W. J. Doherty and B. Pope.
Computing as a Tool for Human

Augmentaion.
_ IBM Research, Yorktown Heights,
NY 11622, Jan 1986.

[18] D2Software.
Macspin. :
d2Software, Austin TX, 1985.

[19] T. O. Ellis and W. L. Sibley.
The Grail Project verbal and film
presentation, 1966.

[20] W. K. English and D. C. Engelbart.
A Research Center for Augmenting
Human Intellect.
Proceedings of the National Computer
Conference, IFIPS, 1968.

[21] J.D. Foley, A.Van Dam, S. K. Feiner,
and J. F. Hughes,.
Computer Graphics Principles and
Practice, Second Edition,, chapter 14
and 16..
Addison-Wesley, MA, 1990..

[22] J. D. Foley, A. Van Dam, S. K. Feiner,
and J. F. Hughes,.
Computer Graphics Principles and
Practise, Second Edition,, chapter 14
and 16..
Addison-Wesley, MA, 1990..

(23] K. S. Fu.
Languages for Visual Information
Description.
1984 IEEE Computer Soctety Work-
shop on Visual Languages, pages
222-231, December 1984.

[24] F. E. Giesecke, A. Mitchell, and H.C.
Spencer.
Technical Drawing,, chapter 17.
The Macmillan Company, NY, 1958..

[25] F. E. Giesecke, A. Mitchell, and H. C.
Spencer.
Technical Drawing, chapter 15.
The Macmillan Company, NY, 1958..

[26] F. E. Giesecke, A. Mitchell, and H. C.
Spencer.
Technical Drawing, chapter 16.
The Macmillan Company, NY, 1958..

[27] D. Gittins.
Icon-based human-computer inter-
action.
International Journal Man-Machine
Studies, 24:519-543, Academic Press,
London, 1986.

[28] R. L. Gregory.
The Intelligent Eye,.
McGraw-Hill Paperbacks, NY,
1970..

[29] D. Huff.
How to Lie With Statistics.
Norton, 1954.

[30] W.H. Huggins and Doris R. Entwisle.
Iconic Communication.
Johns Hopkins University Press,

1974,
Bibliography

[31] SAS Institute Inc.
SAS User's Guide: Basics.
SAS Institute Cary, NC, 1982.

[32] Carol Kaehler.
MacPaint.
Apple Computer, Inc., 1983.

[33] R. R. Korfhage and M. A. Korfhage.
Criteria for Iconic Languages.
in S.K. Chang et al, editor, Visual
Languages, Plenum Press, 1987.

' [34] F. Lakin.

Visual Grammars for Visual Lan-
guages.

AAAI '87 Proceedings, Vol. 2, pages
683-688, 1987.

[35] K. N. Lodding.
Iconics - A Visual Man-Machine
Interface.
Proc. Nai'l Computer Graphics
Assoc., 1:221-233, NCGA, Fairfax,
VA, 1982.

[36] J. Mackinlay.
Automatic Design of Graphical Pres-
entations.
PhD thesis, Stanford University,
1986.

[37] PC Magazine.
Statistical Analysis.
PC Magazine, 8(5):103--315, Ziff-
Davis, NY, 1989.

[38] A. Marcus.
Tutorial 18: User Interface Screen

Design and Color.
ACM/SIGCHI, 1986.

[39] Fanya S. Montalvo.
Diagram Understanding: The Inter-
section Between Computer Vision
and Graphics.
MIT AI Lab. Memo 873, November
1985.

[40] B. A. Myers.
Visual Programming, Programming
by Example, and Program Visualiza-
tion: A Taxonomy.
CHI '86 Proceedings, pages 59-66,
1986.

[41] B. A. Myers.
Creating Dynamic Interaction Tech-
niques by Demonstration.
CHI '87 Proceedings, pages 271-284,
1987.

[42] G. Nelson.
Juno, a Constrain-Based Graphics
System.
ACM SigGraph Proceedings, 24,
1985.

[43] W. M. Newman and R. F. Sproull,.
Principles of Interactive Computer
Graphics, pages 237, 246-255..
MecGraw-Hill, NY, 1973..

[44] P. Reisner.
Human Factors Studies of Database

Query Languages: A Survey and As-

sessment..

Computing Surveys, 13, March 1983.

[45] B. Richmond, P. Vescuso, S. Peterson,
and N. Mauville.
A Business Users Guide to Stella.
High Performance Systems, 1987.

[46] D. F. Rogers.
Procedural Elements for Computer
Graphics,.
< Missing journal >, pages 272-280.,
MecGraw-Hill, NY,
1985..

[47] W. B. Rouse.
Human-Computer Interaction in the
Control of Dynamic Systems.
Computing Surveys, 13(1), March
1981.

(48] Robert W. Scheifler.
X Window System Protocol, Version
11.
MIT, 1987.

[49] T. Selker and L. Koved.
A Formal Analysis of Visual Lan-

guage.
IBM Research, Yorktown Heights,
NY, 1988.

Bibliography

[50] T. Selker and L. Koved.
Room With A View (RWAVE): A
Metaphore Interactive Computing.
IBM Research, Yorktown Heights,
‘NY, 199%0.

[51] T. Selker, C. Wolf, and L. Koved.
A Framework for Comparing Sys-
tems with Visual Interfaces.
Interact '87 Proceedings, North
Holland Amsterdam, September 1987.

[52] B. Shneiderman.
Software Psychology.
Little, Brown and Company, 1980.

[563] B. Shneiderman.
Designing the User Interface.
Addison-Wesley, 1986.

[54] Nan C. Shu.
Visual Programming Languages: A
Dimensional Analysis.
Proceedings of the International
Symposium on New Directions in
Computing, Trondheim, Norway, Au-
gust 1985. :

[565] B. Sproull, W. Newman, and J.
Maleson.
The Press File Format.
Xerox PARC, December 1979.

[56] M. Stefik.
The Loops manual.
Xerox PARC, 1985.

[67] L. E. Sutherland.
Sketchpad: A Man-Machine Graph-
ical Communication System.
Spring Joint Computer Conference

Proceedings, 23, 1963.

[58] Symbolics, Inc.
Maxima Symbolic Mathematics Ma-
nipulation Package..
Symbolics, Inc., 1986.

[59] C. C. Tappert, J."M. Kurtzberg, and
Paula S. Levy.
Elastic Matching for Handwritten
Symbol Recognition.
IBM Research, Yorktown Heights,
NY 9988, May 1983..

	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2
	Pt1
	pt2

