RC 13929 (#62613) 8/17/88
Computer Science 7 pages

Research Report

Elements of Visual Language

Publications Library
T.J. Watson Research

~ 1988 IEEE WORKSHOP |
ON VISUAL LANGUAGES §

‘ Sponsored by the University of Pittsburgh

Computer Society Order Number 876
Library of Congress Number 88-82087
IEEE Catalog Number TH0229-5

ISBN 0-8186-0876-5
' SAN 264-620X

October 10-12, 1988/Pittsburgh, Pennsylvania, USA

@ THE COMPUTER SOCIETY @’ SoMETY o
(] PRESS

IEEE THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

RC 13929 (#62613) 8/17/88
Computer Science 7 pages

Research Report

Elements of Visual Language

Ted Selker and Larry Koved

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, N.Y. 10598

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM
and will probably be copyrighted if acceptled for publication. It has been issued as a Research Report
for early dissemination of its contents and will be distributed outside of IBM up to one year after the
IBM publication date. In view ol the transfer ol copyright to the outside publisher, its distribution
outside of IBM prior to publication should be Iimited 10 peer communications and specific requesits.
After outside publication, requests should be filiked only by reprints or legally obtained copies of the
article (e.g., payment of royalties).

EE’{ Research Division
Almaden « Yorktown « Zurich

Elements of Visual Language

Ted Selker

Larry Koved

Thomas J. Watson Research Center
IBM Research Division
P.O.Box 218
Yorktown Heights, N.Y. 10598

ABSTRACT

Visual language is the systematic usc of visual prescntation (graphic)
techniques to convey meaning. This paper proposes a structural
classification and vocabulary for these languages. Visual languages,
like verbal Janguages, are defined by a grammar and semantics. This
paper defines the visual grammar, the elements of visual language.

Visual elemcnts are composed of:

visual alphabet a set of visual primitives used in a visual lan-
Buage

visual syntax compositions of primitives to form visual
statemcnts

intcraction user 1o system communication

structure rules combining sublanguages into a language

The classification of the visual elements can be viewed as a linguistic
description of visual language.

INTRODUCTION

A programmer writing an application can not avoid being
influenced by knowledge of icons, menus, and computer
graphics. Should their programs be menu driven? Should
all objects be represented by icons? Exposurc to design
examples is useful to the extent that we know how and
when to employv them in user interfaces.

We need a framework for analyzing interactive svstems
with graphic interfaces. Some questions that can be
asked include: How does the user interface reveal the
underlying semantics of the program? How docs the
interface compare to other program interfaces? How docs
the interface affect the usability of the program? What
other kinds of programs could use such an interfacc?
Each of these questions is important. But, first, it is im-
portant to consider the graphic clements, or building
blocks, from which the visual interface is constructed.

Graphic design provides a set of tools for creating
depictive text and graphics on paper. Several books have
been written as guides for designing graphic prescntations
[15, 39]. We should draw from such work to codify and
extend graphic design for interactive systems. Pcople in
fields ranging from semiotics to sociology, have begun the
process by cataloging techniques and describing the value
and power of visual languages

[3, 7, 8, 13, 16, 20, 21, 24, 34]. From thesc works.
this paper refines the concept of visual elements in intcr-
active computing.

BACKGROUND

Definitions of visual language have taken many ap-
proaches. Some have taken a formal mathematical ap-
proach to defining visual language [12]. Mackinlay uscd
first order logic to define a formalism for working with
presentation graphics [21]. The notable works of Card
and Reisner use task action grammars to describe inter-
active systems [6, 27]. Such formal definitions of visual
grammars do not necessarily afford a working definition
or feeling for visual language.

Mpyers defined an operational approach to classifying
visual languages directed at describing programming
power and expressiveness [24]. The classification scg-
ments visual interfaces as supporting:

e programming-by-example or not
batch or interactive style interaction
visual programming or not
visualizing static or dynamic data.

e & o

Shu’s classification covers much of visual languages along
three broad dimensions [34]:

e visual extent

* scope

e language level

Chang'’s tutorial draws from a broad range of sources in-
cluding Myers and Shu [8]. Chang segments visual lan-
guages into:

e Janguages that support visual interaction

e visual programming languages

e vjsual information processing languages

e jconic visual information processing languages

The tutorial describes a number of systems that fit into
these catecgories.

Selker, et al, built a framework for comparing systems
with visual interfaces by contrasting [31]:

e the visual elements used in an intcrface
their domain of application
e the relationship between the interface and system
functionality
the expressive power of the interface
the interaction style and mode
e and the visual interfacc’s relationship to other visual
interfaces :
The framework serves as an umbrella for describing
interactive systems with visual interfaces. This paper
provides a definition of the elements of visual language.
The clements consist of the alphabet, syntax, interaction
paradigm, structure and coverage of the language. The
visual elements construct a language that the other parts
of the framework elaborate.

VISUAL ALPHABET

Visual language is the systematic usc of visual presenta-
tion techniques to convcy meaning. A visual alphabct is
the set of spatial, surface and temporal techniques used
in a visual language. lconic systems [8] and visual ob-
jects [23] define similar distinctions. Several studics have
classified visual output techniqucs [4, 13, 20]. Tech-
niques for producing visual alphabets include:

e Jmages arc derived from photos, digitization or
projections. Chang and Lodding describe represen-
tational imagery as images derived from photographs,
degraded photographs or drawings [8, 20]. Fred
Lakin’s "visual parser” allows shapcs to be interpreted
as meaningful language elcments in a visual grammar
[19].

e Jcons are symbols with physical world referents
[4, 8, 13, 16, 18]. Icons are stylized representations
-of .abjects or processes. For examplc. the fork and
knife icon connotes a place to eat. .

e Symbols are drawings of arbitrary design [20]. The
character “a” is an example of a symbol. These are
labels with no a priori referent.

e Surface Characteristics include the perceptually sepa-
rable and salient dimensions of color: huc, saturation,
value and texture [22].

e Hue, saturation and value arc defining dimensions
for color. These are often used to convey infor-
mation: stop and caution are typically depicted
by red and yellow respectively.

e Texture can also convey information. It is often
uscd to differentiate obscured items in 2 menu or
windows on a screen. Textures on computer
interfaces, like textures on wall paper, arc com-
posed of images icons or symbols (see Figure 5).

Halftoning is a process that uses dichromatic tex-
turc to recreatc gray-scale images. A grid of

Figure 1. Halflonihg'

varying size dots gives the illusion of a gray-scalc
image (see Figure 1).

e Rendering is the technology and approach uscd to
present a visual language. Techniques for rendering
include drawing with with vectors or polygons. Lay-
out languages such as Press [35], PostScript [2] and
ACM/SIGGRAPH "“Core System” [1] are languages
for rendering. Hooper demonstrates differences in
various presentation techniques for similar imagery

[14].

VISUAL SYNTAX

The visual techniques described thus far are combincd
into visual statements by using a syntax. It is evocative
to draw parallels between visual syntax and natural lan-
guage syntax. However, the inhercnt serial naturc of na-
tural language relative to the inherently spatial structure
of visual language makes the notion of parsing and state-
ments quite different. Natural language relies on articles,
prepositions and punctuation for delineating structure
and context. Visual language, on the other hand, quite
naturally uses spatial structyre to represent the context in
which information is interpreted. Linguistic terms arc
used in this paper solely as points of reference.

Visual parsing distinctions can be scparated into syntac-
tical catecgories:

positional
size

time

rule

Positional syntax includes situations in which spatial re-
lationships between visual elements confer information to
the observer. These situations includc:

e Relative Positional relationships:

o Sequential - Spatial sequence of objects denote an
order in which visual elements should be consid-
ered. Written languages use sequcntial syntax.
Words follow each other left to right and top to
bottom. Sequential languages can usec spacc dif-
ferently. Cartoons frames arc often arranged on
a line or column (see Figure 2).

s
=

Figure 2. Scquential Positional Relative

®

Figure 3. Metrical Positional Relative

Figure 5. Intersecting Positional Interacting Syntax.

e Mertrical - Measurcment is used to denote relative
value. Plotting a function uses metrical syntax.
Plots using polar, cartesian, projected 3d and log-
arithmic scales are examples of metric coordinate
spaces. A metrical syntax could use position on
a B-splinc as its mctric. Graphs and bar charts
use a cartesian coordinate system to relate two
dimensions of information (scc Figure 3).

e Orientation - The relative angular rclationship
between visual objects. © For threc dimensional
solids, the rotation presents a view of objects or a
scenc. A rotation of 180 degrees along the hori-
zontal or vertical axis would result in a view of the
far side (rear) of the object. For an analog clock,
the orientation of the hands with respect to the
dial is the indication of the time of day.

@ Interacting Positional relationships:

e Embedded - spatial enclosure or gcometric con-
tainment. Examples include text balloons in car-
toons (see Figurc 4). VennLisp is a programming
language using an embeddced notation [19]. A
program is defincd by positioning hollow lan-
guage key symbols inside of each other. Evalu-
ation in VennLisp proceeds from the outside of

the diagram inward.

e Intersecting - partial or total spatial overlap of
visual objects. In electrical circuit diagrams, the
intersection of straight lines at right angles indi-
cates continuity in the circuit. Venn diagrams usc
intcrsecting regions, as well as embedded syntax,
to express relationships (see Figure 5). Overlap-
ping window systems often use intersection (oc-
clusion) syntax to define which windows are
active.

o Shape - Spatial relationships, like those found in
puzzles, allow syntax to prescribe how things can
be connected together (see Figure 6).
Research and Development Center’s Bridge svs-
tem has pieces which fit together like a puzzic to
make programs.

¢ Positional Denoted relationships:
Specifiers, such as lines or labels, indicatc relation-
ships between objects.

* Connected - Arcs specify connectivity bctween
visual objects. These connections specify scman-
tic information. Nodc/arc notations arc used in
computer flow charts, electrical wiring diagrams,
organization charts, etc. Stella is a visual pro-
gramming language that allows a user to draw
several styles of nodes and arcs to specify a pro-
gram [28].

o Labeled - Spatial relationships can be maintained
by symbols. In large circuit diagrams, spatial re-
lationships are not always sccn on a single draw-
ing. Labeled wires are used to refer to other
drawings (see Figurc 7).

Size - Relative size of objects influences how and when
component items are interpreted (parsing order). Cata-
logs often contain large pictures of expensive objects,
smaller pictures for less expensive. Ancient petroglyph
languages sometimes usc size as the organizing fcature.
Importance of people and things are expressed by relative
size on cave walls.

Temporal - Many visual languages use time as an organ-
izing dimension. Computer drawing programs usc
temporal information to affect meaning in scveral ways.

Recency can be used to determine the order of spatial
overlapping. Blinking draws the attention of the reader.
Most mouse oriented scenarios present some functionality
through temporal actions, such as pressing thc mouse
button twice to start an application.

Lecarning-

Figure 6. Shape Positional Interacting Syntax.

Rule - An algorithmically described visual relationship.
Cursors in text editing environments are often designed
to stop at the end of a line, wrap around to the next line
or to the top of the screen.

Visual syntaxes can be combined in relationships using
constraints JUNO [26] and ThingLab [5] usc “con-
straint” languages to define the spatial relationships be-
tween displayed objects. Things can “attract” ncarby
objects.

The Gauges system uses rules that arc not two way con-
straints [36]. The system updates a gauge when a vari-
able changes, moving a gauge ncedlc docs not change the
variable it represcnts.

Peridot depends heavily on rules [25]. Peridot defines
these as two one way relationships rather than expecting
them to be symmetric constraints.

INTERACTION

To talk about interactive systems, we must describe the
input techniques and their rclationship to output tech-
niques. By gaining insight into the interaction process,
we can lcarn how the input, application (semantics) and
visual language (output) are interdependent.

® Feedback - A system can be open loop or depend on
feedback to support interaction. An open loop system
might simply delete a filc in response to a user issuing
the erasc command without indication of success. At

the other extreme of the continuum is the immediate
response 10 mouse movements or a text editor that

responds to each keystroke.

e [nteractivity abstraction - A mapping cxists from the
user’s action to the system’s response. One end of this
continuum is a transparent mapping betwecen uscr
action and system response. A relatively dircct cor-
respondence between action and response exists when
a person is using a scrcen based editor. The computer
echoes the symbols the person types and moves the
cursor around the screen when the arrow keys are
pressed. The other end of the continuum is described
by a discontinuity between user actions and system
responses. This is typified by batch and command
line interfaces. An indirect correspondence exists in
a text editor when a person types on a command linc
and the computer responds with a message elscwhere
on the screen.

position

- /| position
gl;:ﬂ-on imersecting
uental

Figure 7. Labeled Positional Denoted

® Response time defines how quickly the system re-

sponds to the user. Traditional operating system lit-
erature distinguishes Real-timc Interactive-time and
Batch-time as definitions for computer responsc. Re-
sponse time can vary from becing temporally indistin-
guishable to temporally distant from an action. Fast
response in a time-shared computing cnvironment

makes a large difference on productivity of individ-

vals [9].

Prior discussions of interaction have ranged from inter-
active vs. batch [24] to the use of direct manipulation
[32]. Our classification defines “direct manipulation” as
closed-lnop feedback, transparent mapping between action
and consequence, and temporally indistinguishahle re-
sponse time. Rouse discusses issues of appropriate feed-
back and response in some detail [29].

Input paradigm is the scquence of actions for communi-
cation from a user to the system. The visual output
techniques described above nced to be matched by some
set of input techniques. #Thesc techniques include sc-
lection, gesture and shape interpretation.

* Keyboard Entry includes text cntry and mcnu sc-
lection. The keyboard entry device may be similar to
a typewriter and includes variants such as chord key-
boards [11].

. Point and Pick is a menu sclection paradigm. Sc-
lection can be made with a mouse, joy stick. digitizing
tablet, touch screen or other direct manipulation
technique. Menus allow a user to sclect items from a
list, labeled buttons, a sct of pictures, or structured
spatial display [33].

® Point and Move is a paradigm whcre an object is sc-
lected and moved. Many windowing systems allow
the uscr to point to an object and drag it to a new
location on the display. This technique was first
demonstrated in the Sketchpad system [37]. Many
systems (video games, CAD systems, etc.) use gesture,
shape and temporal movement to dictate the “parse”
of an image.

® Point and Draw is the general drawing tcchnique
which leaves a mark wherever the cursor has been.
MacPaint relies heavily on this technique [17]. Grail
was the first system to demonstrate the use of draw-
ing in an interface [10].

™ B

text arss
command line

D/

Figure 8. Text editor

® Gesture Interpretation is thc use of motion through
space and time. Some mouse drivers (i.e., X-windows

[30]) use the specd with which the mouse is moved -

1o accelerate cursor movement on the screen. Hand-
writing recognition systems can use gesture recogni-
tion to interpret characters and editing commands

[38, 40, 41].

STRUCTURE AND COVERAGE OF VISUAL LAN-
GUAGES

‘We tend to think of a visual interfaces as homogenous..
In reality, these interfaccs are composed of heterogencous
interacting visual languages. Menus are often augmented
with text entry or other direct manipulation techniques.
Recognizing how languages are used for different pur-
poses in a visual interface is part of visual language de-
sign. Use of separatc visual languages in a system can
segment function, system structure, type of manipulation
or perspective on information.

Structure pertains to the segmentation of activitics and
commands. A typical text editor. has several visual lan-
guages in its interface (see Figure 8). The text arca uses
direct manipulation for positioning characters, words and
blocks of words with a cursor. A ruler at the top of the
window (borrowed from the typewriter) changes its ap-
fearance as a user types in the text arca. A sct of com-
mands can be accessed by a menu or via a command line.

The highly moded structurc of the cditor can be held in
contrast to the program interpreter for the language
BASIC. BASIC has only one visual language, set of
commands and functionality in its interface.

Coverage of the language is described by Shu as one of
three dimensions for classifying visual languages [34].
Coveragce ranges from special to gencral purpose. A spc-
cial language might be a notation for describing organic
chemical bonds and only describes a subset of a system.

Conversely, a calculator usually shows all of its
functionality through a single language and interface.

In contrast are the instruments in the LOOPS system. Its
structured icons show all of the functionality of the sys-
tem. By choosing various parts of the icon, a user ac-
cesses various subsets of its capabilities (see Figure 9).

1 Handwriting can also be analyzed through image interpretation
techniques.

Figure 9. Instruments

An instrument is chosen to view and change a variable in
a program. When an instrument, such as the pitcher, is
chosen, the coverage of the instrument is one variablc. not
the whole program.

SUMMARY

This paper is a piece of the framework of issues that we
believe should be considered when analyzing or designing
a visual language [31]. By separating out clements of
visual language, this paper gives a framework for defining
a visual language. We have made the following scgmen-
tation of visual languagc: _

- building blocks of a visual language

Visual Alphabet
Images - photos
Icons - cancaturcs
Symbols - designs
Surface - Color, Texture
Rendering - presentation technique
Visual Syntax - creating graphic statements
Positional - spatial graphic relationships
Relative - Sequential, Metrical, Oricntation
Intcracting - Embedded, Intersecting, Shape
Denoted - Connccted, Labeled
Size - size graphic relationships
Temporal - time graphic relationships
Rule - defined graphic relationships
Interaction - relationship of user input to systcm’s output
Fecdback - systcm response
Abstraction - transparcncy of action-response mapping
Response time |
Input paradigm - keyboard, point & pick, point & move,
point & draw, gesture
Structure - graphic sublanguages
Coverage - specificness of graphic language

These lend structure to techniques available for creating
graphic computer interfaces. We belicve that our deline-
ation of visual elements can help in the process of creating
and evaluating visual languages. D¢composition of parts
of visual language is essential for building a visval lin-
guistics. We hope that our structurc of visual clements
will help in that process.

i

2%

28.

29.

30.

31.

32.

33.

s

Greg Nelson, “Juno, a Constrain-Bascd Graphics
System,” ACM SigGraph Procecdings, vol. 24,
1985. '

Phyllis Reisner, “Human Factors Studies of Data-
base Querey Languages: A Survey and
Assessment.,” Computing Surveys, vol. 13, March
1983.

Barry Richmond, Peter Vescuso, Steve Petf:rson'
and Nancy Maville, A Buisness Users Guide to
Stella High Performance Syster.ss, 1987.

William B. Rouse, “Human-Computer lnteracti.on
in the Control of Dynamic Systems,” Computing
Surveys, vol. 13, no. 1, March 1981. .

Robert W. Scheifler, X Window System Protocol,
Version 11 MIT, 1987.

Ted Selker, Catherine Wolf, and Larry Koved, “A
Framework for Comparing Systems with Visual
Inwrfaces.” Interact ‘87 Proceedings, North
Holland Amsterdam, September 1987.

Ben Shneiderman, Software Psychology Little,
Brown and Company, 1980.

gen Shnciderman, Designing the User Interface
\ddison-Wesley, 1986.

34.

3s.

36.

37.

38.

39,

40.

41.

Nan C. Shu, “Visual Programming Lanuages: A
Dimensional Analysis,” Procecdings of the Inter-
national Symposium on New Directions in Com-
puting, Trondheim, Norway, August 1985.

Bob Sproull, William Newman. and Joc Maleson,
The Press File Format, Xerox PARC, Dccember
1979.

Mark Stefik, The Loops manual Xcrox PARC,
1985.

Ivan E. Sutherland, “Sketchpad: A Man-Machinc
Graphical Communication System,” Spring Joint
Computer Conference Proceedings, vol. 23, 1963,

C. C. Tappert, J. M. Kurtzberg, and Paula S.
Levy, Elastic Matching for Handwriten Symbol
Recognition, IBM Research, Yorktown Hcights,
NY, 9988, May 1983.. '

Edward R. Tufte, The Fisual Display of
Quantatative Information Graphics Press, 1983,

J. R. Ward and B. Blesser, “Interactive Rcecogni-

. tion of Handprinted Characters for Computer

Input,” IEEE Computer Graphics and
Applications, vol. 5, no. 9, pp. 24-37, Sept. 1985.

Catherine G. Welf and James R. Rhyvne, A
Taxonomic Approach To Understanding Direct
Manipulation, IBM Rescarch, Yorktown Heights,
NY, RC13104, July 1987.

10.

11.

12

13.

&

&
o

REFERENCES
ACM, editor. “Status Report of the Graphics
Standards Planning Committee of
ACM/SIGGRAPH,” in ACM, editor, Computer
Graphics, vol. 11, no. 3, Fall 1977.

Adobe, PostScript Language Reference Manual
Addison-Wesley Publishing Company, Inc., 1985.

Rudolf Arnheim, Visual Thinking University of
California Press, 1969.

Charles Bigelow and Donald Day, “Digital
Typography,” Scientific American, vol. 249, no. 2,
pp. 106-119, August 1983. :

Alan Borning, Thinglab -- A Constraint-Oriented
Simulation Laboratory, PhD thesis, Stanford Uni-
versity, 1979.

Stvart K. Card, Thomas P. Moran, and Allen
Newell, Psychology of Human Computer Inter-
action Lawrence Erlbaum Associates, 1983.

Shi-Kuo Chang, Visual Languages Plenum Press,
1987.

Shi-Kuo Chang, “Visual Languages: A Tutorial
and Survey,” IEEE Software, pp. 29-39, 1987.

Walter J. Doherty and Bucky Pope, Computing as
a Tool for Human Augmentaion, IBM Rescarch,
Yorktown Heights, NY, 11622, Jan 1986.

T. O. Ellis and W. L. Sibley, The Grail Projcct
vertal and film presentation, 1966.

W. K. English and Doug C. Engelbart, “A Re-
search Center for Augmenting Human Intellect,”
Proceedings of the National Computer Conference,
IFIPS, 1968.

K. S. Fu, “Languages for Visual Information
Description,” 1984 IEEE Computer Society Work-
shop on Visual Languages, pp. 222-231, Deccmber
1984.

David Gittins, “Icon-based human-computer
interaction,” International Journal Man-Machine
Studies, vol. 24, pp. 519-543, Acadcmic Press,
London, 1986.

15.

16.

17.

18.

19.

20.

21.

22.

24.

2.

Kristinal Hooper, Experimental Mapping The
Perceptual Representation of Environments, Uni-
versity of California, Santa Cruz Technical Re-
port, 1982.

Darrell Huff, How to Lie With Statistics Norton,
1954.

W.H. Huggins and Doris R. Entwisle, [conic
Communication Johns Hopkins University Press,

1974.

Carol Kaehler, MacPaint Apple Computer, Inc.,
1983.

Robert R. Korfhage and Margaret A. Korfhage.
“Criteria for Iconic Languages,” in S.K. Chang ct
al, editor, Visual Languages, Plenum Press, 1987.

Fred Lakin, “Visual Grammars for Visual
Languages,” AAA] '87 Proceedings, Vol. 2, pp.
683-688, 1987.

K.N. Lodding, “Iconics - A Visual Man-Machinc
Interface,” Proc. Nat'l Computer Graphics Assoc.,
vol. 1, pp. 221-233, NCGA, Fairfax. VA., 1982.

J. Mackinlay, Autgmatic Design of Graphical
Presentations, PhD thesis, Stanford University.,
1986.

A. Marcus, Tutorial 18: User Interface Screen De-
sign and Color ACM/SIGCHI, 1986.

Fanya S. Montalvo, Diagram Understanding: The
Intersection Between Computer Vision and
Graphics, MIT Al Lab., Mecmo 873, November
1985.

B. A. Myers, “Visual Programming, Programming
by Example, and Program Visualization: A
Taxonomy,” CHI ‘86 Proceedings, pp. 59-66,
1986.

B. A. Myers, “Creating Dynamic Intcraction

. Techniques by Demonstration,” CHI ‘S7 Pro-

ceedings, pp. 271-284, 1987.

