i

-

Ted Selker

Ognitive Adaptive
Computer Help
(COACH) is a sys-
tem that records
user experience to
create personalized
user help. Imagine
you are learning a
new operating sys-
tem or program-
ming language.
COACH watches your actions to
build an adaptive user model
(AUM) that selects appropriate
advice. Just as a football coach will
stand on the sidelines and encour-
age, cajole or reprimand, so
COACH is an advisory system that
does not interfere with the user’s
actions but comments opportunisti-
cally to help the user along.

COACH might choose to use
description, example, syntax, tim-
ing, topic, style and level of help
according to user-demonstrated
experience and proficiency. A
description that advertises a com-
mand or function is helpful for
getting started, but might become
ignored if it is presented too often.
Example information demonstrat-
ing how to perform a procedure is
often valuable until the procedure
is mastered. Syntax information
generalizing the procedure be-
comes valuable when the proce-
dure is more or less mastered.

An example user is starting to
write Lisp programs, typing
(DEFUN. The help pane serves as a
reminder that the function being
defined must be named and then
givefl an argument list. The system
provides an abbreviated syntax:
DEFUN function-name ()
function-body), omitting the
difficult argument types (optional
arguments, keyword arguments,
etc.). As the user types TIMES-2
(I) (PLUS, the system shifts its
focus to helping with the PLUS
function, and an example of a

92 July 1994/Vol.37, No.7 COMMUNICATIONS OF THE ACM

previous use of
PLUS is displayed.
The user realizes
that adding num-
bers was not
intended and back-
spaces and types
TIMES I 2).The
system changes its
focus of help to
TIMES as it is
being typed, and back to DEFUN
when the user is done with TIMES.

Intermediate-style programmers
have problems keeping track of
the context and appropriateness
of program pieces. The adaptive
teaching scenario works to keep
this type of programmer oriented
by providing context-sensitive help
and user examples.

The example user’s experience
with Lisp data structures is more
extensive, however. When (SETF is
typed, the system’s AUM knows to
show only the very complex argu-
ment list syntax for the SETF
function. If an error is made (e.g.,
wrong argument type), the system
changes its view of the user’s exper-
tise slowly, at first giving examples
of the use of SETF and informa-
tion on CONS cells (a related topic)
to support progress. Experts use
complex arguments even if they
can’t remember them, but often
have enough experience so as not
to need examples to remember
usage.

Agents that Teach
Agents are computer programs that
simulate a human relationship, by
doing something that another person
could otherwise do for you.
Negroponte draws the lovely image
of a butler performing tasks with a
clairvoyant understanding and ability
to take care of user needs [12]. To the
extent that such a system under-
stands how a particular user’s needs
differ from what the standard inter-

face presents, it builds a private inter-
face between the computer and the
user. In this interface, the agent will
“understand” the user’s needs to per-
form formerly complex or unknown
tasks with computer-created simplify-
ing macros.

We could imagine that it might
always be best for the agent to per-
form tasks for the user. Unfortu-
nately, the reliance on such an assis-
tant is reminiscent of the dependency
children experience when relying on
others who know the ropes. Such an
agent, an assistant-style agent, is build-
ing a relationship in which its very
success creates dependency for the
user. As the system builds agent mac-
ros to save the user time and frustra-
tion, a private language develops be-
tween the assistant and the user. If a
human coach tries to help a user, the
lack of common interface language
can become a barrier. If the user has
problems, or loses the assistant (dur-
ing a disk crash, computer reposses-
sion or company layoff) the user is
back at novice level.

The search for a zipless interface
should persist and assistant-style
agents will be part of this. We want
the interface language to feel “ready
to hand” in the sense in which Hei-
degger [20] describes useful tools that
become invisible to the user in a task.
We try to design interfaces with well-
thought-out metaphors of what the
interface is like and carefully de-
signed scenarios of how to perform
tasks. When they do not do what we
expect, we need help to teach us what
the interface does do and to explain
the metaphor so that the system will
make sense.

An advisory-style agent builds a user
relationship with the explicit goal of
educating the individual. One could
see this goal in terms of the fishing
fable: give a person a fish and you've
fed them once, teach a person to fish
and you have fed them for life. The
assistant-style agent gives the user a
fish, the advisory-style agent teaches
the user to fish.

Teaching Systems

Various systems have demonstrated
and evaluated reasoning in educa-
tional situations [2, 3, 5, 13]. Learn-

ing technology used in software edu-
cational goals has been scarcer [6, 18].
For some years we have been build-
ing and working with interfaces that
offer users help and tutoring support
when needed, without inte?rupting
user tasks [16].

The Proactive Interactive Adaptive
Computer Help (PIACH) scenario
for adapting help to a user [18] runs
concurrently with the computer pro-
gram in use. COACH is an adaptive
interactive help system that imple-
ments the PIACH scenario, changing
its model of a user character-by-
character as they work. The com-
puter creates a record in an adaptive
user model (AUM) of a user’s experi-
ence and expertise. Machine-learn-
ing and reasoning techniques at-
tempt to provide help to match the
needs of the particular user. Such
help is said to be provided proactively
when the computer anticipates user
needs to present help before it is re-
quested. Both the user and the com-
puter can initiate help in a mixed-
initiative interaction. Several repre-
sentations work together to create
help for the COACH user: the subject
frames (definitions of the domain),
the adaptive frames (recording of a
user relative to a domain), the pre-
sentation rule sets (which embody a
model of teaching) and the multilevel
parser (syntax definition of domain).

The COACH System

Initially researchers attempted to cre-
ate systems that would analyze user
work to understand semantics. Such
ambitious approaches were computa-
tionally impractical [6, 22]. Even
though personal computers now
have astonishing performance, any
successful use of artificial intelligence
(AI) that is to work in interactive envi-
ronments must choose reasoning and
learning goals using a model of com-
putation. Finally, actual systems are
being built that use learning in the
user interface to change the user ex-
perience [10, 16].

COACH represents user activity to
reason about how to provide help as
the user is typing. Several strategies
limit knowledge search and access
problems. Relationships in the
knowledge representation are re-

corded in predefined links. By limit-
ing the depth of relationship links,
search difficulty caused by complex
links is decreased. To limit represen-
tation growth and reasoning diffi-
culty most user model characteristics
are recorded as scalars. Reasoning is
conducted by small rule sets. These
strategies allow COACH to be com-
putationally practical.

The COACH interface separates
user input from computer output
and advisory help to provide visual
aids, permitting the user to focus
more attention on the problem to be
solved and less on the computer me-
chanics (see Figure 1).

A system could build the adaptive
model by asking a user questions [14].
We, instead, explore user models that
are built by watching the user’s ac-
tions [16]. e

COACH wuses an ‘eiplic’it user
model (see Figure 2)! Frames, facts
and rules represent the user and the
skill domain the user is learning. The
AUM is a set of user model frames
[I1] for syntactic and conceptual
parts of the domain being coached.
While the user is working on a task,
these frames record aspects of the
user’s successes and failures. This
representation of the user and an as-
sociated reasoning system for creat-
ing and accessing knowledge frames
comprises the AUM. The defined
network of relationships between skill
domain parts, what the user is doing,
and the state of the user model is the
basis for selecting user help.

Domain Knowledge is represented
in the help system subject frames,
adaptive frames and the parser gram-
mar. Statements, tokens, concepts and
basis sets are the learnable things in
COACH, the smallest quantities of
information represented as discrete
entities to a user. COACH domain
knowledge is composed of frames for
each of these learnable things, each
with slots describing its utility and the
user’s facility with it.

To use a computer language effec-
tively, a student needs to understand
its syntax and semantics. So, it is rea-
sonable to use a syntax definition as
part of the structure of the represen-
tation for teaching. This definition is

COMMUNICATIONS OF THE A€M July 1994/Vol.37, No.7 93

	pt1
	pt2
	pt3

