.alog-
en
iie

cles
nter—

or
-
1.12,

of

‘1e=

ung,
eft
tal-

L26,

o=

Ll e e o S PRV SRS B e e e e B e o ST SR L A B e

B A T T T LR

Pttt 4 t-22 ¢ H—i-+'.‘~!~—r'1'“7-.hr-+-ﬁ-i—-.'—=-:-:‘—:-:-f-r—

:
;
:
f

Human—Computer Interaction — INTERACT ‘87
H.-J. Bullinger and B. Shackel (Editors)

Elsevier Science Publishers B, V. (North-Holland)
© IFIP, 1987

683

A FRAMEWORK FOR COMPARING SYSTEMS WITH VISUAL INTERFACES

Ted Selker
Cathy Wolf
Larry Koved

Thomas J. Watson Research Center
IBM Research Divisjon

P.O.Box 218

Yorktown Heights, N.Y. 10598

A computer program presents its capabilities and domain of application through a user
interface. With the advent of inexpensive graphics hardware, systems with visual user
interfaces are proliferating. New interface technologies offer opportunities for improving the
usability of programs. It is important to understand how to employ these new techniques in
the design of better user interfaces, A review and comparison of visual interfaces prompted
the necd for a vocabulary and systematic framework to describe them. This paper presents
a framework developed for describing and comparing visual user interfaces.

Communication between computers and humans has often been described in linguistic terms.
This paper uses the term visual language to refer to the systematic use of visual presentation
methods to convey meaning to a user. The framework includes a description of the interface
in terms of the elements, operators and syntax of an interface language, the rationale gov-
erning the use of visual elements, the power of the language, interface characteristics such
as the interaction style and input/ output device dependencies, and the domain and purpose

of the application.

The framework has been useful in identifying important differences between visual inter-
faces and has provided a vocabulary for the discussion of visual language. Elements of the
framework are illustrated with examples from existing systems.

1. INTRODUCTION

Many modern computer systems use visual interface tech-
niques to enhance or replace text. Efforts to demonstrate the
utility of visual interface techniques have more often taken
the form of systems rather than scientific analysis. Grail [1]
was one of the earliest systemis to employ interactive graph-
ics in the user interface. Systems such as the popular Apple
Macintosh [2], modelled after the Xerox Star [3], use spa-
tially organized screens with icons to represent objects and
actions. The success of VisiCalc-style electronic spreadsheet
programs has been attributed in part to their spatial presen-
tation of information.

The appearance of icons, graphics and other visual language
techniques on computer screens does not automatically im-
prove interfaces any more than the printing press assured
that written material would be worthy of reading. One be-
havioral experiment [4] found that users’ performance and
preference differences among seven interfaces were not de-
termined by whether the interface style was iconic, menu or
verbal command language. The authors concluded that
careful design is more important than interface style.

A prerequisite for careful design is to understand the range
of techniques available and the reasons for choosing one
technique over another. Efforts have been made to apply the
principles of graphic design to visual user interfaces. Tuto-
rials, such as ones given by Aaron Marcus at the ACM CHI
conferences, have put-forward these design principles [5].
A recent effort demonstrates automated choice of visual
presentation based on the structure and kind of information
being viewed [6]. Other recent work has taken on the chal-
lenge of classifying visual languages along a number of di-
mensions [7, 8]. These analyses have not been detailed
enough to provide guidance in the design of visual language.

As a first step towards providing such guidance, we have
found it helpful to analyze existing visual languages accord-
ing to a number of characteristics. These include the domain
and purpose of the system, elements of the visual language,
power of the language, and interface characteristics.

This paper includes an example analysis based the user
interface of the Javelin business software package [9]. Ex-
amples from other computer systems employing visual lan-
guage are included as needed.

684 T. Selker et al.

The use of Javelin as this pap‘cﬁr's primary example is not a
judgment that this softwarc demonstrates exemplary use of
visual language. Rather. the choice was made because it
contains a number of visual language ideas and is available
on a popular microcomputer.

2. DESCRIPTION OF SYSTEM UNDER CONSIDER-
ATION: DOMAIN AND PURPOSE

Javelin is a business software package oriented towards the
financial community. It provides spreadsheet and graphics
capabilities. It is directed specifically towards users who
need to perform analyses in which one of the independent
variables is time.

Unlike other spreadsheet packages, Javelin provides several
modes of interaction (views) with the data. Some of these
will be used as examples later in the paper:

@ The Diagram view shows how variables are related to
one apother. This is uscful for showing dependencies
among variables in a spreadsheet. See Figure 2.

e The Chart view uses bar charts to present data values.
See Figure 1.

e The Quick graph view uscs a cartesian graph to present
and change data values of a variable. See Figure 3.

e The Worksheet view is very much like 2 traditional
spreadsheet. Values and formulas in cells are entered
and manipulated.

Some Javelin views arc manipulable, while others are
depictive (output) only. The Diagram view presents the re-
lationship betwecn variables in the system, but data can not
be changed (depictive only). The Worksheet view allows
entry of data and modification of relationships between the
data elements (formulas). These concepts will be explored
further in this paper.

stern matron =

Monthly data: Janusry 1948 - May 1948

JFNQ,NJJQSUNDJF_HQ
48 49

Figure 1. Chart view.

stern malrtoie wememe - i
i,..‘) average stern

stern matooen good Tood

average stern =
AVG(stern matron, stern matron good food)

Figure 2. Diagram view.

3. CORRESPONDENCE - VISUAL INTERFACE VS.
UNDERLYING FUNCTIONALITY

For the purposes of this paper, we are primarily interested in
the visual component, and how it represents the functional
component of a software system. A system provides a map-
pig between the user interface and the system’s underlying
functionality. Javelin provides multiple mappings through its
different views. The output functions, such as the Chart,
Quick graph or Worksheet views, present unique mappings
from the system functionality to the display as output. Based
upon the same underlying functionality, different mappings
yield different presentations or interfaces.

A functional mapping is also performed on user input.
Javelin allows users to enter data or formulas into
spreadsheet cells, or change the height of bars on bar charts
by moving the mouse or pressing cursor keys. The input
actions, moving the mouse or pressing keys, result in changes
being made to the underlying data representation. In turn,
the output function provides positive indication that the us-
er’s input had an effect.

4. ELEMENTS OF THE VISUAL LANGUAGE

A formal definition of any language contains a set of termi-
nal symbols (alphabet) and a grammar to specify legitimate
sentential forms. A visual language is defined by a set of
visible objects, a set of operators to manipulate them, and
the syntax which prescribes relationships between objects
and permissible operations on them. For example, in the
Chart view, the bars, axes and labels are elements of the al-
phabet. The "language" of 2 system may be divided into
several different sublanguages. Javelin includes several
sublanguages for input (menu selection, data entry, etc.),
output (Worksheet, Quick graph, Diagram, etc.) and navi-
gation (getting from one part of the system to another).

The syntax of a language defines the relationship between its
elements. If a visual language is to describe bar charts
(Javelin's Chart view), then the syntax prescribes the shape
of the bars (rectangular), the use of borders and fill pattern,
orientation (vertical or horizontal), height, spatial relation-
ship to other bars and axes, axes labels, etc. The relation-
ships among the elements of the bar chart convey

ster matron
1
0.0
0.6
04
8.2
! JFHARY
® Montrs
Figure 3. Quick graph view.

Lot g oo o o B St RE Tl o o b dul I [ST O R I o S)

+

-
-
L

i
}
I
%
i

:
I
I
-
i

%
-
[
t
.
L
-
3
i

ACE VS.

‘erested in
functional
'es a map-
inderlying
trough its
he Chart,
mappings
ut. Based
mappings

er input.
ilas into
sar charts
‘he input
1changes

In turn,
it the us-

of termi-
egitimate
" a set of
aem, and
1 objects
e, in the
of the al-
ided into
; several
-y, etc.),
nd navi-
1er).

tween its
« charts
he shape
pattern,
relation-
relation-
convey

Lo i e o R L T S S A LR I R S ST A

=+

|
t
|
{.
!
;
!
g
:

A framework for comparing systems with visual .r‘nr_e'rfaces 685

information to the user. Placing one bar on top of another
conveys different information to the reader than if they are
placed side by side. Similarly, the use of shading or the fill
pattern used in the bars also conveys information.

5. RATIONALE GOVERNING USE OF BASIC LAN-
GUAGE ELEMENTS P

Visualization techniques are a central component of user
interfaces. These techniques include: text, shape, position,
texture, color, temporal relationship, abstract icons, symbol
icons, and pictures. -

Systems offering similar functionality can have completely
different visual interfaces. To a degree, these differences can
be explained by priorities applied to the design of a system.
Communication goals and "real world" constraints are two
types of design priorities which affect how a system’s inter-
face uses visual language. Communication goals are con-
cerned with what the designer wants to communicate to the
user. Designers may use multiple visualization techniques to
delineate the structure of a system, represent the system'’s
functionality, represent data, and to give multiple views of
information. Real world constraints include compatibility
with existing and earlier systems, or software and hardware
constraints. We typically infer the designer’s goals from the
characteristics of the interface.

5.1. Communication Goals

A visualization technique may be used in an interface 1o
segment a system’s structure. Icons and menus. for example,
help segment the structure and function of 2 system. They
are often used to help a user navigate through a system.
Javelin uses a menu front-end to allow users to choose a view
through which they will display and manipulate information.
The use of different visualization techniques also helps to
distinguish the views. For example, given their different vi-
sualization techniques, it would hard to confuse the Work-
sheet and Chart views.

The Macintosh uses visualization techniques to segment the
structure and functionality of the system. Macintosh's icons
represent objects and applications; text menus are used to
represent actions. As a user "opens” an icon, it might start
a new program. This new program might employ visualiza-
tion techniques which differ from the icon menu technique
used to select it.)

Different visualization techniques may be used to provide
somewhat different information about the same data. Se-
veral Javelin views are designed to view the same data from
different perspectives. Javelin’s Chart view lets the user
quickly assess the approximate magnitude of data values.
This is particularly useful when comparing the relative mag-
nitude of a variable over time. The Worksheet view provides
the user with the precise numeric values.

Differences in visualization techniques can also represent
differences in functionality. In Javelin’s Worksheet view,
text formulas are used to depict and manipulate relationships
among variables. In the Diagram view, lines and arrowheads

depict the direction of the relationship between two vari-
ables, but not the functional relationship between them.

5:2. Real-World Constraints

The desire for compatibility with existing or previous inter-
faces is often a factor in the selection of visualization tech-
nique. The goal of compatibility is to enhance the transfer
of skills from a system with which the user is familiar to a
new system. The menu bar across the top of the screen used
to access the Javelin functions is similar to that used in the
popular spreadsheet program, Lotus 1-2-3 [10] Inaddition,
the input language for selecting a menu item by typing is
similar to the 1-2-3 method. To invoke the menu, one types
"/" followed by the first letters of tae Javelin command.
For example, to invoke the Chart view, one types "/VC".
Presumably, the Javelin designers deliberately chose a menu
interface similar to 1-2-3 on the assumption that many
Javelin users would have prior experience with 1-2-3.

The goal of compatibility with other interfaces is sometimes
at odds with optimal design of an interface. A classic exam-
ple can be found in the layout of the QWERTY keyboard.
This layout was originally designed to slow typists down to
minimize key jamming in the days of the earliest mechanical
typewriters. This requirement is now obsolete, but we ad-
here to the QWERTY layout in the interests of compatibil-
ity.

Another type of real-world constraint involves
hardware /software characteristics of the devices on which
a2 system is expected to run. This constraint is discussed
further in the section "Input/Qutput Devices." The point
10 be made here is that the visualization techniques used in
an interface sometimes reflect the lowest common denomi-
nator of the hardware /software characteristics of the target
devices.

6. LANGUAGE POWER

The power of a visual language describes the level of func-
tion available to the user for accessing and modifying the
underlying data or functionality. Some visual languages can
only present information, while others allow modification of
the functionality or data. We have found the following dis-
tinctions to be useful in describing the power of visual lan-
guages:

e depictive — A visual language is depictive-only when it
has the capability to describe something, but not to
modify it. = Depictive languages have been referred to
as program visualization [7]. The Diagram view of
Javelin is an example of a depictive language. It em-
ploys a diagram to display the dependency relationships
between variables, but does not allow the user to change
these relationships.

® manipulable — A visual language is manipulable if can
be used to change data values. The Chart view in
Javelin allows the user to change data values by chang-
ing the height of the bars in the bar graph. These new

ipulation
sual rep-
. In the
ile to an

«d, menu

Verbal
s and to
ommand
:lect this
the main
‘w" sub-
7 can be
)y up or
: repres-

ny user
changed
ds. The
ning the
itering a
e” com-

soth the
T directly
both the
ability to

L.

it of as-
ile to the
rabilities

ardware:
he hard-
re. Sim-
\ging the
‘haracter
aich var-

tem is an
it to use
the two-
in the
{-y posi-
cumber-
ns using
Jard.

mceptual
r to help
somputer
s under-
| the cor-

aam o 2o B BRI B o e o o o e o e B I A e i B I TR I S S B N T T SN SR TP R O S S T SN R S S S S

L Lol BX Sl B]

'
-
-
-
“
-
-
-
-
-
-
.
-
*
-
-
-
-
-
.
§
+
9
-
+
-
-
-
a
-
-
o
+
+

A framework for comparing systems with visual interfaces 687

responding functional elements of an underlying system. It
can also aid in understanding syntactic rules governing com-
binations of elements in a language.

Javelin uses several separate metaphors in the different
views. In the Worksheet view, Javelin employs the paper-
and-pencil spreadsheet metaphor. Variable names or dates
are entered in the row and column headings and numbers in
the worksheet cells. Calculations are performed on numbers

in the worksheet by entering the appropriate formula in a#

cell. Thus, the worksheet looks and has semantics similar to
a paper-and-pencil spreadsheet. The Diagram view uses a
limited flow-chart metaphor to portray dependencies among
variables. Lines and arrowheads are used to connect vari-
ables which affect one another (see Figure 2 on page 3). A
typical flow-chart shows flow of control information. In

contrast, the Diagram view shows data dependency infor-
mation. The Chart view uses physical size in a bar graph as
the metaphor for representing the magnitude of a variable.
Changes in the value are made by changing the size of the
bar.

Javelin's use of metaphors is fairly transparent in that the
user may not be explicitly aware of them. In the case of the
paper-and-perncil spreadsheet metaphor, the user feels that
the spreadsheet is the underlying system. Other metaphors
are more evocative than accurate. Desk-top metaphors are
one such example. Filing cabinets and trash cans are not
usually placed on top of desks; objects can be removed from
physical trash cans, but not from desk-top metaphor trash
cans; and pulling a copy of a document out of a folder in the
desk-top metaphor results in a new copy being made, but this
is not true in the physical world. The analogy used by met-
aphors may not always be a simple, complete and accurate.

8. WHY IS THE SYSTEM INTERESTING?

A visual interface may be interesting because of the visual-
ization techniques it employs, or the ways in which it uses
them: o

® New visual language techniques — These often manifest
themselves in systems. The Xerox Smalltalk and Cedar
environments were among the first system to use
pictograms to activate programs.

® New applications of visual elements — VisiCalc [14] was
a new application of constraint language ideas to tabular
layout of data.

e Integration of visual techniques not previously demon-
strated together — Javalin integrates several visual lan-
guages and presents multiple views of the same data.

@ Usability characteristics — What-You-See-Is-What-
You-Get (WYSIWYG) style text editors, such as Bravo
[15], have been shown in some situations to allow in-
creased speed and accuracy.

® New interaction paradigms — Laura Gould's Program-
ming By Rehearsal [16] uses a theatrical metaphor, with
a stage and actors. The user auditions animated actor
images that can then be selected to become part of a
program.

9. CONCLUSION: AN ASSESSMENT

In this paper we have presented a framework for comparing
different visual interfaces. This framework has been useful
in identifying important characteristics of visual interfaces
and has provided a vocabulary for the discussion of visual
language. Others "6, 5] have proposed design guidelines for
visual interfaces based on the principles of graphic design.

An important next step is to relate the characteristics identi-
fied in these analytical efforts to the usability of a system
through behavioral studies. Observational studies such as
[17] and experimental studies such as [18] are promising first
steps towards understanding usability. It is our hope that by
combining behavioral and analytical approaches we can be-
gin to provide guidance for the design of visual interfaces.

REFERENCES

1. T. O. Ellis and W. L. Sibley. The Grail Project verbal
and film presentation, 1966.

2 Carol Kaehler. MacPaint. Apple Computer, Inc.,
1983.

3. W. L. Bewley, T. L. Roberts, D. Schroit, and W. L.
Verplank. Human Factors Testing in the Design of
Xerox's 8010 "Star" Office Workstation. CHI ‘83
Proceedings, pages 72-77, 1983.

4. John Whiteside, Sandra jones, Paula S. Levy, and
Dennis Wixon. User Performance with Command,
Menu, and Iconic Interfaces. CHI 85 Proceedings,
1985..

5. A.Marcus. Tutorial 18: User Interface Screen Design
and Color. ACM/SIGCHI, 1986.

6. J. MacKinlay. Automatic Design of Graphical Pres-
entarions, PhD thesis, Stanford University, 1986.

T B. A. Myers. Visual Programming, Programming by
Example, and Program Visualization: A Taxonomy.
CHI °86 Proceedings, pages 59-66, 1986.

8. Nan C. Shu. Visual Programming Lanuages: A Di-
mensional Analysis. Proceedings of the International
Symposium on New Directions in Computing,
Trondheim, Norway, August 1985.

9. J. Bemnoff, E. Brout, and J. Waldron. Javelin.
Javelin Software Corp., 1985.

10. J. Posner, J. Hill, 8. E. Miller, E. Gottheil, and M.
L. Davis. Lotus 1-2-3 User’s Manual. Lotus Devel-
opment Corp., 1983.

values are incorporated ‘into the database available to
the other Javelin views.

e ‘programmable — A visual language is programmable if
it allows a user to add new data elements or function.
The Worksheet view allows the user to create new
functions by using existing variables, constants and
built-in functions. These formulas are essentially user-
defined programs. The resulting variables can be used
in the Worksheet and other Javelin views. A more
graphic example of a user programmable language is
Pict [11] which allows the user to create programs by
positioning icons for data, variables and operations and
connecting them by colored lines. *

e scope - A visual language can be designed to work in a
specific domain, such as a computer aided design system
(CAD) for circuit layout, or in many domains. A
“paint" program, such as MacPaint [12], can be used in
many domains. It can be used to sketch a house or dia-
gram the bonds of a chemical molecule.

The languages (views) in Javelin are domain-specific in
that they are well suited for business analyses. They are
also task-specific in that the values of all variables must
be expressed as a function of time. Thus, although
Javelin is suitable for describing and manipulating
monthly sales figures, it cannot be used for representing
sales as a function of geographic area.

Javelin has domain-independent aspects. The visual
presentation of dependency relations used in the Dia-
gram view could be used effectively in other domains
or tasks.

7. INTERFACE CHARACTERISTICS

In this section, we consider several interface characteristics
affecting user interactions with the visual language: inter-
action styles, input/output device dependencies, and the use
of visual metaphors.

7.1. Interaction Styles

The interaction style is the means by which the user com-
municates with the system. Several types of interactions
styles are commonly employed in the user interface. These
include verbal command, menu selection of text oricons, and
object manipulation interaction styles. Verbal commands
require typing operators, operands, and attributes. For ex-
ample, to print a copy of a file named work/ on a laser
printer, the user might type: “print work] device=laser".
Menu selection requires the user to select operators, oper-
ands and attributes from a menu of displayed text or icon
alternatives. The selection is typically carried out by point-
ing to the desired item and performing a selection action.
Typical selection actions include pressing the return key,
clicking a mouse button, pressing a function key, or typing a
character corresponding to the item. In the above example,
the user might select the icon for a file by clicking on it, select
“print” from a text menu of file commands, and select

T. Selker et al.

“Jaser” from a menu of printer types. Object manipulation
style requires the user to transform or move the visual rep-
resentation of the object to perform the operation. In the
print example, the user might drag an icon of the file to an
icon of the laser printer.

The Javelin user interface employs verbal command. menu
gelection and object manipulation interfuce stylcs. Verbal
commands can be used to access the various views and to
perform operations within 2 view. The typed command
" /VC" selects the Chart view. The user can also sclect this
same view by first selecting the item “View" from the main
menu followed by the item “Chart” from the *View" sub-
menu. The value of a variable in the Chart view can be
changed by object manipulation. Moving a cursor up or
down on a bar will change the value of the variable repres-
ented by the bar.

Combinations of interaction styles coexist in many user
interfaces. In Javelin, the value of a variable can be changed
by combining menu selections and verbal commands. The
user selects the variable to be changed by positioning the
cursor at that variable and changes its value by cntering a
new one. Typing in a new value implies the “change’ com-
mand as well providing the new value.

The feel of a system is strongly influenced by both the
interaction style and the visual language. The fecl of directly
manipulating a value in the Chart view comces from both the
visual representation of the value as a bar and the ability to
change the value by moving the cursor up and down.

7.2. Input/Output Devices

Visual languages are typically designed with a sct of as-
sumptions about the input and output devices available to the
user. In many cases, particular input and output capabilities
may be required to use the language.

Javelin is designed for use with personal computer hardware:
2 monochrome character display and keyboard. The hard-
ware inherently limits the capabilities of the software. Sim-
ple cursor movement (up or down) is used for changing the
value of variables in the Chart view. Similarly, the character
display limits the resolution of the increments by which var-
iable values can be changed.

The visual language of the Macintosh operating system isan
example of a visual language which would be difficult to use
with a keyboard as the only input device. Since the two-
dimensional position of an icon is significant in the
Macintosh, a mouse, which permits simuitaneous X-y posi-
tioning, was employed. It would have been more cumber-
some 1o require users to perform positioning operations using
the four conventional cursor control keys of a keyboard.

* 1.3. Visual Metaphors

A metaphor is a systematic reference to a real or conceptual
world. Many visual interfaces employ a metaphor to help
users learn, remember or predict how to use a computer
system or program [13]. A metaphor can help users under-
stand the relationship between visual elements and the cor-

)

TR SRC N B B A S B

et e

B et

e e R R

T Y 8 e e Y

P—

!tvt!ttvitv-tv'-vveultvo.....»gaur|!na-—-—9-f

688

11.

12.

13.

14.

15.

T. Selker et al.

E. P. Glinert and S. L. Tanimoto. Pict: An Interac-
tive Graphical Programming Environment. Com-
puter, November:7-25, 1984.

Carol Kaehler. MacPaint. Apple Computer, Inc.,
1983.

J. M. Carroll and R. L. Mack. Metaphor, Computing
Systems, and Active Learning. International Journal
of Man-Machine Studies, 22:29-57, 1985.

V. Wolverton. VisiCalc. Visi Corp., 1983.

S. K. Card, J. M. Robert;~and L. N. Keenan. On-
Line Composition of Text. Inreract 84 Conference
Papers, 1:231-236, 1984.

16.

17.

18.

W. Finzer and L. Gould. Programming by Rehersal.
BYTE, June:187-210, 1984.

J. M. Carroll and S. A. Mazur. Lisa Learning. /BM
Research Report, RC 11427, 1985.

W. P. Jones and S. T. Dumais. The Spatial Meta-
phor for User Interfaces: Experimental Tests of
Reference by Location versus Name. ACM Trans-
actions on Office Information Systems, 4:42-63,
1986.

P T

	pt1
	pt2
	pt3
	pt5
	pt4
	pt6

