RC 17584 (#77588) 1/15/92
Computer Science 14 pages

Research Report

Intelligent Tutoring Systems:
Limitations of Current Representations

Ted Selker

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

F.N. Linton

University of Massachusetts =
Knowledge Communication

Systems Laboratory
Ambherst, MA 01002

LIMITED DISTRIBUTION NOTICE

This report has been submilled for publication outside of IBM and will probably be copynighted it accepted for
publication, It has been issued as a Research Report for early dissemination of its contents and will be distributed
outside of IBM up lo one year alter the date indicated at the tcp of this page. In view of the transfer of copyright to
the outside publisher, its distribution outside of IBM pricr to publication should be limited to peer communications
and spectlic requests, Alter outside publication, requests should be lilled only by reprints or legally obtained copies
of the article (e.g., payment of royalties).

Research Divisien
Almaden * T.J Watson * Tokyo * Zurich




Intelligent Tutoring Systems:
Limitations of Current Representations

Ted Selker
IBM

T.J. Watson Research Center
Selker@watson.ibm.com

F.N. Linton

University of Massachusetts

Knowledge Communication Systems Laboratory
Linton@cs.umass.edu

Number of words: 3200

Short Title: ITSs: Current Representational Limits

Sumary:

Idealized Intelligent Tutoring Systems are usually described as having both
domain expertise and instructional expertise; Most Intelligent Tutoring
Systems, however, have an explicit representation, of only one type of
expertise, usually domain expertise. We observe that a few Intelligent
Tutoring Systems having separate and explicit representations of both domain
and instructional expertise have been constructed and that they are capable of
more powerful individualized tutoring than Intelligent Tutoring Systems having
an explicit representation of only domain expertise. Furthermore, they are
more easily: adapted to new domains, maintained, and evaluated (both domain

and instructional modules).






Introduction

In this paper we examine approaches to the design task of constructing
separate and explicit representations of domain expertise and tutoring
expertise in an Intelligent Tutoring System (ITS). The benefits of including a
separate and explicit representation for each of these types of expertise are
those of flexibility and modularity; researchers can construct, evaluate, and
revise representations of domain and tutoring knowledge more easily if these

representations are separate and explicit than would otherwise be the case.

One difficulty that arises when selecting a domain representation for an ITS
stems from the fact that procedural expertise, for example, doing subtraction,
is more naturally represented in a machine-interpretable form, such as rules,
while declarative knowledge i.e., facts, concepts, and principles about
subtraction, is more naturally represented in frames of fixed-text. Yet both -
kinds of knowledge need to be represented if an ITS is to have a full

representation of a domain.

A further difficulty that arises when constructing separate and explicit
representations of domain expertise and tutoring expertise in an ITS is that
the instructional representation must access the domain representation in an
instructionally meaningful way. The instructional use of domain knowledge,
whether machine-interpretable or fixed-text, is different from the direct

application of the domain knowledge (i.e., teaching math is different from
doing math, although it includes doing math). Thus the instructicnal

representation must be linked to the domain representation with connections

that are meaningful to the instructional representation.

Idealized ITSs are often described as having two expert systems, a dcmain
expert and an instructional expert (Wenger, 1987; Polson & Richardson, 1988).
In this idealized model, the expert instructor teaches students the skills of
the domain expert by repeatedly comparing students to the domain expert as
they solve a sequence of problems, then carrying out any needed instructional

activities based on the comparison.



As constructed, however, ITSs tend to emphasize either domain expertise or
tutoring expertise rather than the instantiation of both. See, for example,
the ITSs described in one recent conference (Frasson, 1988)., Systems with
machine-interpretable domain expertise (capable of solving problems in the
domain) often have little tutoring expertise; furthermore, the tutoring
expertise they have is not explicit, but embedded in the code or in the domain
representation. In contrast, systems that emphasize tutoring expertise and
have runnable tutoring modules tend to represent domain knowledge simply as
fixed-text. In general, ITS researchers who actually build ITSs tend to

emphasize domain expertise rather than tutoring expertise.

While valid reasons may exist for emphasizing the representation of domain
expertise over tutoring expertise or vice versa, the separate and explicit
representation of tutoring expertise and domain expertise 1.) allows tutoring
expertise and domain expertise to be "mixed and matched," making existing ITSS
more readily generalizable; 2.) enhances ease of maintenance, since changes in
the design of one area have minimal effect on the other; and 3.) permits the

independent evaluation of domain and tutoring modules.

Furthermore, the separate and explicit representation of tutoring expertise -
the form of expertise that tends to be neglected - allows researchers to
implement, evaluate, and modify tutoring theories, strategies and styles.
Finally, a separate and explicit representation of tutoring expertise
facilitates the development of a more complex and highly skilled tutor; an ITS
that can vary its responses to users on a number of levels, taking into
consideration, for example, the nature of the domain knowledge, users' current

tasks, their existing knowledge, and their learning styles.

In the remainder of this paper we examine how several ITS researchers have
managed the design tradeoff of machine-interpretable vs. fixed-text domain
knowledge, and to what extent they have managed to create separate and
explicit representations of tutoring expertise and domain expertise. Clancey,
in GUIDON, uses a machine-interpretable representation of domain knowledge and
a machine-interpretable representation of tutoring knowledge, labeling domain
knowledge for instruction by its place in the rule (i.e., he teaches the rules

by their parts). Anderson, in Lisp Tutor, uses a machine-interpretable



representation of domain knowledge, attaching an implicit representation of
tutoring knowledge (in the form of a tutorial dialogue template) to each rule.
Murray, in Statics Tutor, uses a fixed-text representation of domain
knowledge, and a separate, explicit representation of tutoring expertise.
Domain knowledge is labeled in terms meaningful only for instruction. Selker,
in COACH, uses both machine-interpretable and fixed-text representations of
domain knowledge, and a separate, explicit representation of tutoring
expertise. Each of the design tradeoffs made by these ITS researchers results
in an ITS with certain strengths; these are discussed further below, Table 1

summarizes these systems and the representations they utilize.

Example Domain Tutoring Linkage, £from Tutoring Rep-
Represen- Represen- resentation to Domain Repres-
tation tation entation

Clancey: D-Rules T-Rules T-Rules teach D-Rules.

GUIDON

Anderson; Rules & Templates Templates teach domain rules.

Lisp Tutor Textbook

Murray: Fixed-text & Nets & Domain fixed-text embedded in
Statics Simulation Rules tutoring net. No link to simulation.
Tutor

Selker; Formal lang- Rules Rules select text.

CQACH uage & Text frames

Table 1 Domain and Tutoring Representations and Their Links
Tutors, their main forms of representation of domain and tutoring knowledge,

and the predominant form of linkage between the tutoring and domain modules.




To tutor a case, MYCIN first solves the case, then saves the resulting
solution trace as a data structure for GUIDON to refer to as it tutors the
learner. The domain rules can be run at any time, so MYCIN kncws what the
student could conclude at any time. A meta-knowledge level keeps track of
which conditions of each rule have been satisfied, which subgoals have been
met, when a rule has been used, etc. Tutoring rules select a domain rule to
discuss, decide what to discuss about it (what part of the rule), and whether
to ask a question or provide information. Tutoring rules also respond to a

student's input with answers or questions, and update the student model.

Clancey's cleverness in linking tutoring rules to domain rules by rule parts
(i.e., the tutoring rules refer to the condition parts, subgoals, and action
parts of the domain rules), allows the tutoring rules to refer to the domain .
rules in an abstract, yet instructionally useful way. This form of linkage, in
turn, allowed Clancey to separate tutoring expertise from domain expertise and

treat them independently.

Clancey's early success in creating separate, explicit, and linked
representations of domain and tutoring knowledge showed the value of this
approach and the need for: 1.) representing domain expertise in a form useful
for learners, 2.) representing additional domain knowledge as fixed-text, and

3.) representing tutoring expertise in a principled way.

A Seminal Example of Explicit and Separate
Representations

A seminal example of separate and explicit representations of domain and
tutoring knowledge is found in Clancey (1982). Domain expertise is represented
in MYCIN's production system while tutoring expertise is represented in
GUIDCON's production system. GUIDON uses the case method with interactive
dialogue.



The three problems Clancey found with GUIDON have been addressed by later

tutors:

+ While MYCIN can solve domain problems, the way knowledge is represented
does not correspond to a representation of domain knowledge that
learners find useful. Anderson, in his Lisp Tutor, described next,
represents domain knowledge in a manner suggested by his PUPS
cognitive theory, a manner he finds corresponds more closely to
learners' needs.

« Domain expert knowledge consists of more information than is found in
MYCIN's rules of expertise. There is no place in MYCIN to represent this
declarative knowledge as fixed-text. Selker, in his COACH, described
below, incorporates a second representation of the domain specifically
for fixed-text.

* GUIDON's tutoring rules are ad hoc. Murray, in his Statics Tutor, also
described below, presents a more principled formulation of tutoring

skills.

An Example Emphasizing Domain Knowledge

Anderson's (Anderson, Boyle, Corbett, & Lewis, 1990) Lisp Tutor has been used
with good results in a college level programming course. Anderson's
representation of procedural and declarative domain knowledge, tutoring
knowledge, and the linkage between them was inspired by Clancey, but is

different in several ways. The Lisp Tutor represents procedural domain

expertise in production rules written according to Anderson's PUPS cognitive
theory. The PUPS cognitive theory distinguishes general-purpcse declarative
knowledge from use-specific procedural knowledge, and provides a theoretical
basis for encoding procedural knowledge in rules, or productions, that are
meaningful to learners (in contrast to and an improvement over MYCIN which

also encoded procedural knowledge in rules, but in a format meaningful to
experts).



Declarative knowledge about Lisp that Anderson has found to be crucial to
learners has been placed, not in the Lisp Tutor, but in an accompanying
textbook, Essential LISP (Anderson, Corbett, Reiser, 1987). In fact, Anderson
has put everything users need to know in the textbook, which, he states, being
PUPS based, is "more effective than standard textbooks even without a tutor"
(Anderson, et al., 1990, page 14). In any case, this declarative knowledge

accompanies the Lisp Tutor, but is not accessible to it for instructional use.

Anderson has embedded instructional expertise throughout his system: some
tutoring knowledge is represented explicitly in rules, more is encoded in
templates that accompany each Lisp domain rule, and a great deal of tutoring

knowledge is included implicitly in the textbook.

Anderson's representation of procedural domain knowledge in a form
specifically designed for learners has improved upon the MYCIN representation,
which encoded expert knowledge in a form difficult for learners to apprehend.
The large amount of declarative domain knowledge in the textbook is evidence
that, for comprehensive instruction such as a college level course, a purely
procedural representation of domain expertise is not sufficient. Putting the
declarative domain knowledge in a textbook, however, makes it inaccessible to
the tutor. From another perspective, the textbook and the tutor together
comprise a system for teaching that goes well beyond traditional textbooks,
since the Lisp Tutor interacts with learners as they write Lisp code,
providing learning guidance and feedback that could not otherwise be obtained
without a human tutor. The representation of tutoring knowledge has become
less explicit and less general than GUIDON's, however, with a corresponding

decrease in flexibility and adaptability of the system.

An Example Emphasizing Tutoring Knowledge

Woolf & Murray (1987) provide an example of an ITS that focuses on expert
tutoring skills. TUPITS (TUtorial discourse Primitives for Intelligent
Tutoring Systems) contains frames with lessons, topics, presentations, and

responses; these are selected and presented by TACTNs, (Tutorial Action

6



Transition Networks) prototypical tutoring strategies and behaviors. Murray
has instantiated numerous tutoring strategies in TACTNs. Murray's (1991)
physics tutor teaches statics by traversing a statics topic network and
presenting the contents of the frames; the tutor selects a frame to visit
based on the active TACTN and the kinds of link among the current frame and

its related frames.

Murray's tutor uses an explicit machine-interpretable representation of
tutoring skills (the TACTNs), and a fixed-text representation of statics in
the variocus slots of the TUPITS frames, but the tutor has no machine-
interpretable representation of statics. The system perceives its domain
knowledge only as components of instruction. If students want to know the
effect of an action in the statics domain (procedural knowledge), they switch
to a stand-alone statics simulation where they observe the effects of moving

loads and supports, etc., before returning to the tutor.

Murray's tutor illustrates the value of an explicit representation of tutoring
skills. Using TACTNs, educational researchers can easily design, implement,
evaluate, and modify instructional strategies, which greatly facilitates
experimentation. Also, researchers can replace the current domain simulation
and domain knowledge with others, and independently evaluate tutoring and

domain representations.

A Current Example of Explicit and Separate
Representations

Selker's COACH (COgnitive Adaptive Computer Help), is an architecture for
teaching syntax and static semantics (Selker, 1989). COACH has been used to
teach Lisp programming (Selker & Goroway, 1991) and the UNIX command language.
Unlike the tutors described above, COACH does not control the session, but
functions unobtrusively as users go about tasks of their own choosing. COACH
observes users as they write expressions and displays information about the
expressions that users might find helpful. For example, COACH might post a
description, an example, or the syntax of an expression. Each of these may be
presented at any of four levels of expertise, according to COACH's evaluation

of the user's level of skill.



COACH has two representations of domain knowledge. One is a machine-
interpretable definition of syntax which COACH refers to in order to ewvaluate
the correctness of a learner's expressions and to prompt the user for the next
token. The second domain representation is a frame of syntax-related text
associated with each command and token. These frames have slot names that are
instructionally significant. For example, the slot labeled PLUS:

Description, Level 1 holds text to be presented to the user when the
coaching module infers that the appropriate coaching action is to present a

level 1 description of the expressicn PLUS.

COACH has a rule-based representation of coaching skill. COACH's coaching
rules determine, by a consideration of the user's current activity and of the
user model, which of the three kinds of help text, if any, to place on the
help screen, and which level of help to present. The rules represent coaching-'
heuristics identified by Selker and have descriptive names like Encourage-
Exploration and Veto-Arglist. The coaching rules are concerned with the kind
of domain information in each slot, rather than its meaning; the slot names
describe the kind of information in terms meaningful to coaching, e.g.,

Description, Level 1.

In COACH, domain knowledge is represented in both machine-interpretable and
fixed-text formats. Given these, COACH has the ability to interpret learners'
actions, and to present them with helpful information as they are working.
Representing coaching skill in rules whose conditions refer to the user's
activity and to the user model and whose actions refer to instructionally
meaningful slot names means that changing coaching styles by adding or

revising rules is relatively easy, and that coaching procedures are demain-

independent.

Conclusion

Value of explicit domain representation: A machine-interpretable domain
representation allows the tutoring module to reason about the domain. Clancey

and Anderson's work demonstrates the value of am explicit machine-

8



interpretable representation of domain expertise: their tutors can demonstrate
procedural skills and provide feedback to learners as they practice. Woolf and
Murray's work demonstrates the value of a fixed-text representation of domain
expertise: their tutors can present information beyond that contained in
rules, such as examples, related concepts and principles. Selker's COACH,
having domain knowledge represented in both formats, machine-interpretable and
fixed-text, has the capability of interpreting learners' actions, and teaching
not only machine-interpretable procedural knowledge but related declarative

domain knowledge as well,

Value of explicit tutoring representation: Clancey, Murray, and
Selker's work demonstrates the value of a separate and explicit machine-
interpretable representation of tutorial expertise. Because tutoring and
domain representations are separate, domain knowledge can be revised or even N
exchanged for knowledge from a different domain without affecting the tutorial
representation. In other words, the tutorial representation can serve as a
shell - different domains can be taught with the same tutor. Because the
tutoring representation is explicit, the tutoring strategy can be revised, or
exchanged for a different one, simply by rewriting the tutoring rules. These
features make it easy to adapt the tutor as the designer, educatiocnal

researcher, or learner desire.

Value of abstractly-linked representations: Clancey and Selker's work
demonstrates the value of knowledge linked abstractly across representations;
the links enable the separation of domain and tutoring knowledge, and allow

the expert tutor to reason about domain knowledge without being concerned with

its content. In Clancey's GUIDON, tutoring rules teach domain rule parts
without 'knowing' their contents: the parts of the domain rules serve as
labels to link tutoring expertise to domain knowledge. In Selker's COACH, the
condition side of the tutoring rules consults the machine-interpretable domain
representation in order to determine users' current activity, while the action
side of the tutoring rules selects appropriate information from the fixed-text
representation for presentation to users. The benefits of these features are

summarized in Table 2.



This paper began by noting a discrepancy between idealized ITSs and as-built
ITSs: idealized ITSs have explicit representations of domain expertise and
tutoring expertise, while as-built ITSs tend to have an explicit
representation of only one kind of expertise, usually domain expertise. This
discrepancy may perhaps be attributable to the difficulty of representing both
declarative and procedural domain knowledge and to the difficulty of finding a
suitable linkage between the tutoring representation and the domain
representation. Nevertheless, separate, explicit representations of domain and
tutoring expertise have several advantages; expertise in each area can be

considered independently in terms of:

* selecting the most suitable representation

* modifying or maintaining the representation

* substituting new domain or tutoring expertise

* evaluating performance of individual ITS components

* experimenting with effects of changes in design

Finally, ITSs with separate and explicit representations of domain and

tutoring expertise are capable of more powerful tutoring.

Feature: Benefit:

Machine-interpretable Demonstrate procedural skills and interactively

domain representation provide performance feedback to learners.

Fixed-text domain Present information beyond that contained in rules,
representation such as examples, related concepts, and principles.
Explicit tutoring Shell for different domains. Easily modified for
representation changing strategy and experimenting.

Abstract link between Separation and explicit representation of domain and

tutoring and domain tutoring knowledge.
representations
Table 2: Features and Benefits of Representations

This table summarizes the features and benefits of explicitly representing
domain knowledge, of explicitly representing tutoring knowledge, and of
linking domain knowledge to tutoring knowledge abstractly.

10



References

Anderson, J.R., Boyle, C.F., Corbett, A.T., Lewis, M.W. (1930). Cognitive
modeling and intelligent tutoring. In W.J. Clancey & E. Soloway, Eds.
Artificial Intelligence and Learning Environments, pp. 1-49. Cambridge

Massachusetts: MIT Press.

Anderson, J.R., Corbett, A.T., & Reiser, B.J. (1987). Essential LISP. Reading,

Massachusetts: Addison-Wesley.

Clancey, W.J. (1982). Tutoring rules for guiding a case method dialogue. In D.
Sleeman & J.S. Brown,Eds. Intelligent Tutoring Systems, pp. 201-225. London:

Academic Press.

Frasson, C. (1988). ITS-88: Intelligent Tutoring Systems. Montreal, QC,

Canada: University of Montreal.

Murray, T. (1991). A Knowledge Acquisition Framework Facilitating Multiple
Tutoring Strategies in an Automated Tutor. Doctoral Dissertation, Amherst,

Massachusetts: University of Massachusetts.

Polson, M.C., and Richardson, J.J., (1988). Foundations of Intelligent

Tutoring Systems. Hillsdale, New Jersey: Lawrence Erlbaum.

Selker, Ted. (1989). COgnitive Adaptive Computer Help (COACH). In D. Bierman,
J. Breuker, & J Sandberg, Eds. Artificial Intelligence and Education:
Proceedings of the 4th International Conference, pp. 245-251. Amsterdam,
Netherlands: IOS.

Selker, Ted., & Goroway, K. (1991). Demonstrating Usability Improvements in
Automatically Presented Adaptive Help Yorktown Heights, New York: IBM

Distribution Services.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos,

California: Morgan Kaufmann.

11



Woolf, B., & Murray, T. (1987). A Framework for Representing Tutorial
Discourse. In International Joint Conference in Artificial Intelligence

(IJCAI-87). Los Altos, California: Morgan Kaufmann.

12



Copies may be requested from:

IBM Thomas J. Watson Research Center
Distribution Services F-11 Stormytown
Post Office Box 218

Yorkiown Heights, New York 10598



