ABETTER WAY TO HELP

A computer help system
that combines the pa-
tience of a machine with
the watchfulness of a hu-
man lets users learn faster
and perform better

In the absence of a royal road to learn-
ing, the next best thing is a good tutor.
That thought has no doubt often sprung
to mind in those trying to learn a new
programming language or application in
which the nearest source of instruction
is a fat, dense manual. Even in the few
ideal instances in which the manual or
accompanying tutorial really does pro-
vide help in getting started. most users
at some point find themselves labori-
ously trying to recall details from an
earlier lesson or struggling to marshal
their newly acquired knowledge to
solve a problem not dealt with in the
book. What we need in such situations
is a tutor, or coach, someone who, by
watching what we do, will patiently
guide us through the fog of half-assimi-
lated knowledge and keep us from get-
ting too far off course.

But humans are not needed in all
cases. In learning a computer language
or application, one often commits el-
ementary but frustrating mistakes that
the computer—with its distressingly
literal approach to communication—
simply balks at. Yet, in principle,
computers are quite capable of acting in
a more flexible manner, responding to
an error in command syntax, for ex-
ample. with a list of possible alterna-
tives. How much simpler, then, to take = 4 B
the next step and turn over the entire Ted Selker’s GOACH system is the first adaptive help system that hoth works interactively and provides
tutoring operation to the computer. users with immediate productivity benefits.

IBM RESEARCH MAGAZINE NUMBER 4,19392 g

Harnessing computers as tutors, or
coaches, is not a new idea. and various
approaches have been tried. At the
most basic level, at which the computer
functions as a surrogate for an instruc-
tion manual or textbook. popping up
help screens at the user’s instigation,
there is little that one can properly call
tutoring. Nevertheless. there are chal-
lenging and important issues in design-
ing online help menus, and such static,
passive “help” systems are useful to a
point,

The intelligent tutor

Qualification as a tutor requires a

more sophisticated appreciation of the
learner’s predicament than can be in-
corporated in a noninteractive program.,
So-called intelligent tutoring systems,
first introduced in the early 1970s, go
considerably further toward providing
functions that one normally associates
with a human. Instead of trying to sim-
ply mimic a textbook or manual, these
systems attempt to capture features that
reflect the interaction between a stu-
dent and a teacher. One of the first such
systems, called SCHOLAR, developed
by Jaime Carbonell in 1970, posed
questions to the student and allowed
the student to ask questions about the
subject domain (South American geog-
raphy).

But is that what it really means to
enlist the computer as teacher or tutor?
“Since people first started working
with computers, they have typically
imagined it was like talking to a per-
son,” says Ted Selker, mathematical
sciences, Watson (now in computer
science, Almaden). Unfortunately,
that’s not the case, he notes. The com-
puter doesn’t know anything about the
person and just does what it’s told.

For a computer to be of real assis-
tance, it needs to know enough about
the learner to pitch its explanations and
advice at the appropriate level, just as a
skilled tutor does. That realization led
Selker, in 1983, while a visiting gradu-
ate student at Stanford University, to

NUMBER 4,1992

The window interface separates user input from help and system responses.
A menu at the bottom allows a user to request help directly.

COACH ADAPTIVE USER MODEL SYSTEM COACH
GENERAL HELP
TOKEN HELP
USER INTERACTION PANE OUTPUT PANE

MENU PANE

begin thinking about a computer help
program that would adapt to the indi-
vidual needs of each user, an approach
that he captures in the phrase **Pro-
active Interactive Adaptive Computer
Help.”

“The idea,” says Selker, “was to
have the computer create a model of
your abilities and then be able to
change, or adapt, the model by watch-
ing what you do.” Selker implemented
the idea in a system he called COACH,
an acronym for COgnitive Adaptive
Computer Help. While other people
had discussed adaptive user models.
COACH represented the first imple-
mentation that worked in real time,
providing help instantly. at the first
sign of difficulty.

Most important, Selker demon-
strated that people using COACH
showed measurable performance im-
provements compared to a control

group using a nonadaptive help system.

His behavioral studies. which consti-
tuted the first proofl that such benefits

could be gained from an adaptive sys-
tem that automatically offers help and
tutoring support, have done much to
resolve the long debate over the value
of such systems.

Adapting to the user
Much like a typical human tutor,
COACH operates within a specific do-
main of knowledge, though different
domains can be built on top of its un-
derlying adaptive user model (AUM).
Initially, Selker set up COACH to teach
Common LISP. a programming lan-
guage that has been widely used by the
artificial intelligence (AI) community.
Though the idea of a tutor or coach
suggests help for beginners, COACH
provides assistance for experts as well
as novices., The AUM. by embodying,
in effect, a'teacher’s sense of a
student’s mastery of a lesson or subject
ared, classifies users in four levels of
proficiency based on the students’ re-
sponses, questions and actions. Because
the user model is adaptive, it changes as

A COACH interface during a simple error situation.

COACH ADAPTIVE USER MODEL SYSTEM COACH
CURRENT ENVIRONMENT: LISP-TOP
EXAMPLE:
(OR 99
DESCRIPTION

THIS IS A LISP READER WHICH COACHES PROGRAMMING LISP
TYPE LISP COMMANDS OR EMACS EDITING COMMANDS:

SYNTAX:
TO START WRITING IN LISP, TYPE; (OR A DEFINED SYMBOL.
FOR EMACS HELP USE THE EDITOR-HELP MENU.

AD BEGINS NO FORM KNOWN TO COACH. UNLESS THIS IS A SYSTEM FUNCTION
OR YOU INTEND TO DEFINE IT LATER., PLEASE CORRECT YOUR WORK.

(AD

MENU PANE

A COACH interface supporting learning ahout a specific form and the idea of a form

COACH ADAPTIVE USER MODEL SYSTEM COACH
CURRENT ENVIRONMENT: DEFUN
DESCRIPTION

DEFUN DEFINES A FUNCTION.

DEFUN ALLOW YOU TO NAME AND USE A SET OF LISP FUNCTION CALLS

ONCE DEFINED. THIS FUNCTION CAN BE USED LIKE ANY OTHER FUNCTIONS.
RELATED MATERIAL: IF ANY IS UNFAMILIAR, THEN MOUSE ON LISP-CONCEPTS.

FORM
A FORM IS A LIST THAT IS MEANT TO BE EVALUATED.
(SETQ A9) IS A FORM

EXAMPLE: > (DEFUN FOUR ()

4)--> FOUR
> (FOUR) -==mmeaenes >4

EXPECTING AN ATOM: WHICH IS A SYMBOL OR A NUMBER.

SYNTAX: AN ATOM CONSISTS OF ANY STRING OF CHARACTERS.
EXAMPLE: X LAST_NAME 100

(DEFUN B

MENU PANE

the learner’s skill level increases (or even
decreases), and the type of help it offers is
correspondingly modified.

To achieve this personalized instruc-
tion, COACH contains both a knowledge
of the subject domain—which so far has
included LISP and UNIX"® but could be an-
other programming language, an area of
mathematics or, in principle, any corpus
of knowledge—and a shell. which con-
sists of a set of “interacting objects” that
combines domain knowledge and knowl-
edge about the user in order to perform
various coaching functions.

Coach presents all users, no matter
what their level, with a computer screen
divided into four windows, or panes. The
user works in the interaction pane, and the
result, for example, of an arithmetic calcu-
lation computed with LISP. is shown in an
output pane. Above these working areas
of the screen are two windows with help,
or tutoring, information. The first, called
token help, is directly over the interaction
pane and provides help—primarily to nov-
ices—on specific kinds of entities. or to-
kens. such as numbers, symbols, or
defined variables. All other information
provided by COACH is presented in an-
other window, called general help.

Like a good teacher, COACH encour-
ages novices Lo get started, jogging their
memory by illustrating, for instance. the
general form of LISP syntax. A typical
beginner’s error might be typing ADD in-
stead of the correct LISP function PLUS.
As soon as the user begins typing, COACH
intervenes by posting in the token-help
window the remark: Ad begins no form
known to COACH. Unless this is a system
function or you intend to define it later.
please correct your work.

Such gentle reminders and admonitions
are expected to prompt the student to re-
call the correct function or request addi-
tional help from COACH's user-initiated
help screens. More advanced users require
and receive more specialized assistance.

UNIX is a registered trademark of UNIX sys-
tem Laboratories, Inc.. in the U.S. and other
countries.

IBM RESEARCH MAGAZINE NUMBER 4,19

@

The COACH architecture is composed of interacting parts, or objects, and the arrows show
the information flaw among them. The window interface manages text editing, output for-

matting and menus. The reasoning system creates and uses the adaptive user model (AUM)
to display domain-knowledge help and to modify domain knowledge. Coaching knowledge

controls these reasoning activities. A parser notes a user’s work context and dispatches

information to the reasoning system.

WINDOWS
READER
(REASONING SYSTEM
PRODUCTION SYSTEM
L 4
PARSER =
() =
& BLACKBOARD
PARSER
REASONING SYSTEM
PRESENTATION SYSTEM
CONSISTENCY RULES
AUM UPDATE RULES
ADAPTIVE FRAMES
SUBJECT FRAMES
DOMAIN KNOWLEDGE

Al and the intelligent tutor

Behind this sophisticated interface lies
an architecture built on concepts drawn
from the field of artificial intelligence.
The main elements are the AUM, a rea-
soning system and a parser; together,
they monitor the user’s actions, update
the AUM and then make decisions
about the type of help to provide.

Tn order to evaluate the user’s needs,
COACH has to be able to compare the
user’s knowledge to the total knowl-
edge of the subject domain itself. “Ev-
erything that can be learned about the
domain.” explains Selker, “is expressed
in terms of learnable units, each of
which is recorded in a frame. consisting
of slots for specific pieces of knowl-
edge.” Among the learnable units are
groups of interrelated units, such as

those units that must be mastered in
order to understand another unit. The
set of subject-frames, therefore, both
defines the domain and the logical in-
terrelations within it. COACH draws
on the content of the subject frames to

present information in the help window.

Another set of frames embodies
knowledge about the user, which, in
toto, constitutes the AUM. Called adap-
tive frames, they include examples of
user errors and subsequent corrections,
data on how many times a learnable
unit has been used and how long since
it was last used, a measure of how fast
the user is learning or forgetting
(slope), and a measure of the user’s
progress with respect to a particular
learnable unit (goodness).

COACH's tutoring knowledge, or

¢ |osing Ground—provides the
user with the most basic help

» Qut of Practice—reminds the
user of information that was pre-
viously understood

e Encourage Exploration—sug-
gests useful information not
presently being used

e \Veto Overly Sophisticated
Help—protects the user from
help beyond an appropriate level

» \eto Exira Help—protects the
user from too much help

IF statement used has a low
goodness score and a low learmning
slope, THEN present a user example
and a system example

set of teaching skills. is embodied in &
reasoning system that both continually
revises the AUM and determines what
parts of the domain knowledge—that
is, which subject frames—are to be
presented to the user in a given situa-
tion. The decision is based on the
AUM, and on what the user is doing at
a particular moment. In effect, the sys-
tem reasons, “If the user satisfies such
and such profile (as recorded in the
adaptive frames) and if the user makes
this kind of error. then present such and
such information.”

There are separate presentation rule
sets for different kinds of learnable
units (see box above). The Losing-
Ground rule, for example, kicks in
when a slow learner making little
progress exhibits trouble. The idea is to

first remind the user of something he
once knew by showing a correct in-
stance of the user’s own input, fol-
lowed by an example drawn from the
system’s help text at the user’s level.

The Veto-Extra-Help rule expresses
the idea that, if the user is exhibiting a
lower level of competence than in the
past, the amount of detail in the help
message should be limited.

This description of the rules is not
literally correct in one respect. The help
messages that actually appear in the
help window are not necessarily the
consequents of the rules. Rather, the
consequents are regarded as proposals,
which are first posted on a “black-
board,” where they are able to interact
with vetoes.! The order of the rules in
the rule set dictates the order in which
they are applied, and vetoes are able,
under certain circumstances, to remove
proposals from the blackboard. so that
the user does not see them.

The key to the entire system is the
accuracy of the AUM, If it is not ad-
equately maintained. the presentation
rules function like a lecturer speaking
to an unknown audience in the dark—
there is no way to judge the appropriate
level of the presentation or to infer
whether it is being understood.

The task of creating and maintaining
the AUM is the responsibility of update
and consistency rules (see box above
right). These rules are run at the insti-
gation of another element of the
COACH architecture—the parser,
whose function is to determine what
the user is typing in the input window.
Each time the parser signals a change
in the “parse state™—potentially, as
each character is typed—the rules
change the AUM frames. “In this way,”
Selker explains, “user model frames are
revised each time a function is closed. a
token is typed or found to be unde-
fined, and so on.”

'The use of blackboards was first introduced
by L. D. Erman and Victor Lessor in 1975 in
Hearsay, a speech-activated. chessplaying
program.

« Note Success—activated by a
correct use of a learnable unit; it
improves the user’s rating on the
AUM frame slots for that unit and
related material

* Was Good but Getting Worse—
activated when a user begins
making mistakes with a learnable
unit that had previously been
rated well; it decreases the rel-
evant rating slowly

* Note Used—activated each time
a learnable unit is used

* Bound Goodness and Best—ac-
tivated to record user's “personal
best” :

It works!

To find out how well COACH worked,
Selker and his student assistants carried
out a number of user studies. They be-
gan with the knowledge of the inauspi-
cious fact that, traditionally, help
systems have been shown not to in-
crease the speed with which a user
completes a given task. While in the
long term there are productivity im-
provements as a result of the user’s in-
creased skills, in the early stages the
distraction of accessing the help menus
can slow a person down. There was ev-
ery reason to expect, then, that an
adaptive system that interjected advice
and corrections on its own would be
even more distractive.

But that wasn’t the case. Instead,
says Selker, “our studies showed that
those using the full system were more
comfortable with the tasks and materi-
als and, moreover, outperformed users
who had access to the static help
menus but not the adaptive part of the
system.”

Future enhancements

Many of the AI concepts that underlie
COACH's architecture were derived from
the technology of expert systems—pro-
grams that embody the skill of an expert
in a given domain. COACH. in fact, can
be regarded as a special kind of expert
system—a learning expert system—in
which the expertise is not contained in the
domain itself, for example, LISP—but in
how to characterize, or capture, the
knowledge in the domain, build a model
of a user relative to it. and present help
based on the model and a set of rules.

As in an expert system, in COACH one
can separate the structure—the so-called
shell—from the domain content. COACH,
therefore, can be adapted—relatively sim-
ply—to work with other programming
languages and, in principle. with any cor-
pus of text-based knowledge. Already,
COACH has been extended to teach the
UNIX operating systern’s shell command
language

Further uses are also being contem-
plated, such as with graphics and multi-
media applications. But the full scope of a
system like COACH is broader still. “This
technology.” says Selker, “is useful any-
time the software tool—whether a pro-
gramming language or application—is
sufficiently complicated that users are
less interested in spending time mastering
the intricacies of the tool than in plunging
as quickly as possible into actual problem
solving. COACH allows the user to focus
on the task, learn how to use the tool and
become productive far sooner than would
otherwise be possible.”

Finally, though the current prototype
of the COACH system runs on the IBM RT
PC running the MACH operating system,
as well as on the Symbolics computer
family, work is currently under way to
make it possible to run COACH on a per-
sonal computer platform.

*—RL.D
“This work was done by Matt Schoenblun, a
17-year-old high-school student. He carried out
this project during a 10-week internship, part of
Watson’s educational outreach program, which

is dedicated 1o promoting science and math-
ematics education at local high schools.

IBM RESEARCH MAGAZINE NUMBER

