
An architecture for developing attentive information systems

P.P. Maglioa,*, C.S. Campbella, R. Barretta, T. Selkerb

aIBM Almaden Research Center, 650 Harry Road, NWE-B2, San Jose, CA 95120, USA
bMIT Media Lab, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

Attentive systems attend to what users do so that they can attend to what users need. Such systems track user behavior, model user interests,

and anticipate user desires and actions. Because the general class of attentive systems is broad Ð ranging from human butlers to web sites

that pro®le users Ð we have focused speci®cally on attentive information systems, which observe user actions with information resources,

model user information states, and suggest information that might be helpful to users. In particular, we describe Simple User Interest Tracker

(Suitor), an architecture for developing attentive information systems that track computer users through multiple channels Ð eye gaze, web

browsing, application use, to determine interests and to try to satisfy information needs. By observing behavior and modeling users, Suitor

can be used to ®nd and display potentially relevant information that is both timely and non-disruptive to the user's ongoing activities. q 2001

Elsevier Science B.V. All rights reserved.

Keywords: Attentive systems; Intelligent agents; User modeling

1. Introduction

Computer users are routinely bombarded with informa-

tion from a variety of sources. Running applications vie for

screen real estate to display hints, help, status, alerts, and

other sorts of information. In attempting to manage compet-

ing sources of information, users often con®gure their

screens so that they can attend to what is most important

at any time, while still maintaining the ability to monitor

and interact with less important information. Nevertheless,

monitoring the information at hand can be a full time job,

and even then is prone to error, as unwanted and unneces-

sary information can often ®nd its way into the user's envir-

onment. Can the user interface do a better job of supporting

user's information needs? We think so. In this paper, we

explore an attentive systems approach to information deliv-

ery that is intended to help users manage information by

keeping track of what the user is doing and presenting infor-

mation appropriately.

We de®ne attentive systems as systems that work coop-

eratively with users, learning user interests and facilitating

user needs and goals. This speci®cally requires watching the

user, being aware of the world, modeling the user, anticipat-

ing user needs, and ef®ciently communicating with the user.

Attentive systems as a general class includes butlers, perso-

nal/executive assistants, and other service professionals.

Some new commercial devices also behave like attentive

systems, such as TiVo [1], a system that automatically

records television programs that the user likes or regularly

watches, and web sites such as Amazon.com [2] that moni-

tor book-buying and book-browsing behavior to model

buyer interests and ultimately suggest additional books.

Here we are concerned speci®cally with systems of the

last mentioned kind, attentive information systems or

systems that support user's information needs. In observing

user actions, such a system might track what web page the

user is browsing or what application currently has focus. It

might observe many different sorts of actions or it might

observe just a few that are relevant for a speci®c task. The

key is that a user interacts with the computer as usual Ð

reading, typing, clicking, and the system infers user interest

based on what it sees the user do. To predict what informa-

tion might be useful, an attentive system must learn from a

user's history of activity to improve the relevance and time-

liness of its suggestions, modeling the user and adapting its

models over time. In communicating potentially useful

information to the user, an attentive information system

should not intrude on the user's ongoing activity, displaying

suggestions in the margins or on the periphery of the user's

current task (see also Ref. [3]).

Attentive information systems are distinguished by three

main qualities. First, they gather evidence about user beha-

vior from multiple sources, possibly even across multiple

Knowledge-Based Systems 14 (2001) 103±110

0950-7051/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0950-7051(00)00099-X

www.elsevier.com/locate/knosys

* Corresponding author.

E-mail addresses: pmaglio@almaden.ibm.com (P.P. Maglio),

ccampbel@almaden.ibm.com (C.S. Campbell), barrett@almaden.ibm.com

(R. Barrett), selker@media.mit.edu (T. Selker).



modalities. When only a single source of data about user

activities is monitored, there is a high chance of making

incorrect inferences of user intentions. Multiple sources

help systems disambiguate intentions and build a more

accurate model of the user. In particular, multiple inputs

disambiguate intentions by helping systems take account

of the context of user actions. For example, if the system

knows only that the user is visiting the IBM home page, it

might be reasonable to assume that the user is interested in

IBM's products. However, if the user also has a stock analy-

sis application open and is also reading email about IBM's

second quarter earnings, it might be better to infer that the

user is interested in the current stock price or other ®nancial

news.

The second distinguishing quality of an attentive system

is that it models the user at a very ®ne level of detail. The

user model is kept up-to-date by closely tracking user beha-

vior and interests. For instance, if the user is sending email

to a friend about dinner plans, it might be appropriate to

inform him or her of the hours and fare of local restaurants

Ð but only as long as plans are being made. Once plans to

meet have been set, such information is no longer relevant.

The ®nal quality of an attentive information system is that

it provide users with information that is relevant but not

critical to task performance. Because it is dif®cult to guar-

antee correct and appropriate suggestions that anticipate the

user, it would be unreasonable for such systems to issue a

key-press command, interrupt the user with a noisy alert, or

replace the contents of a window. We call this sort of infor-

mation peripheral information because it is both peripheral

to the task and peripheral to the display (see also Ref. [4]).

The key to peripheral information is that it is not critical to

task performance. Unlike what is generally studied in the

literature on monitoring and supervisory control (e.g. Ref.

[5]), inattention to a peripheral display does not result in

catastrophe, such as a nuclear meltdown or a plane crash.

However, by providing peripheral information, an attentive

system gives the user the opportunity to learn more, to do a

better job, or to keep track of less important tasks.

We designed the Simple User Interest Tracker (Suitor) as

an architecture for developing attentive information

systems. Developers can use Suitor to create customized

programs (or agents) that monitor user actions, search the

world for information, process user actions or world events,

and communicate suggestions to users through a variety of

means. There are many ways to create individual attentive

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110104

Fig. 1. Sample screen showing scrolling display.



devices or computers, and many ways to distribute agents

across devices in the environment to create attentive spaces.

For instance, for a single user working at a computer, we

have created agents that can: (a) monitor web browsing; (b)

monitor a user's eye-gaze to determine where on the screen

the user is actually reading; and (c) ®nd additional informa-

tion on the web about the topic that is being read on the

current web page. Applications can be developed that

perform speci®c functions such as task speci®c help or

web navigation assistants, or large-scale attentive systems

can be created that monitor the user through multiple modal-

ities and perform complex inference. Additionally, agents

from many simple or large applications can be combined

into the same system to provide enhanced functionality.

In what follows, ®rst we explore several scenarios to

illustrate how developers might use Suitor to create systems

that attend to user actions and user information needs. Then

we detail Suitor's architecture and implementation, discuss-

ing issues of user observation, user modeling, and peripheral

information. Finally, we discuss related work, and conclude

with some thoughts on future directions.

2. Scenarios

In one mode, Suitor delivers information to its user

through a scrolling one-line text display located at the

bottom of the screen (see Fig. 1) Ð a peripheral display.

Suitor currently has agents that allow the system to deliver

information through a web browser, by email, or to a perso-

nal digital assistant such as a PalmPilot. To see Suitor in

action, consider how it might affect the information envir-

onment of a computer user named George. The following

scenarios are fully implemented, except as noted in the text.

While debugging a program, George notices a headline in

the scrolling display about terrorism threats in Europe.

Because he ¯ies to Europe twice a month on business,

George clicks on the headline and the full story appears in

a browser window. Throughout the day, George selects stor-

ies concerning the same topic from the scrolling display and

even goes to the web to search for additional information.

Soon he notices new stories about terrorism in Europe, air

safety, and security at airports appearing in greater numbers

in the scrolling display. In fact, there are now more stories

about world news in general.

Like many information push systems, Suitor polls a vari-

ety of news categories Ð including world news, local news,

politics, sports, and weather to obtain headlines to display.

Unlike standard push, the user is not modeled statically, for

instance, as a set of check boxes for selecting broad topics of

interest (e.g. Ref. [6]). Rather, Suitor infers what categories

of news are of interest by attending to ongoing user activ-

ities. Likewise, Suitor is not constrained to any one type of

information but can display what might be relevant to the

user at the time.

Suppose George begins using Microsoft Word to edit a

manuscript. After working for a few minutes, Word tips

begin scrolling across the display, interspersed with head-

lines and stock quotes. From one of these scrolling tips,

George notices that Ctrl-f is the keyboard shortcut for the

menu navigation Edit±Find. In this way, Suitor provides

information that is likely to be more relevant to the user's

ongoing activity than an arbitrary news headline. When

George stops using Word, Suitor stops displaying Word tips.

Suitor contains a number of agents to attend to web

browsing and eye gaze. Browsing activity that can be moni-

tored includes current URL, entered URL, web page text,

and entered search terms. For example, if George opens a

browser and goes to the IBM home page. A few seconds

later the current IBM stock price and news about IBM

appears in the scrolling display. On seeing the stock prices,

George remembers that he wants to invest his bonus in hard-

drive storage technology, so he clicks on the IBM stock

symbol in the scrolling display, which opens a new browser

window with details on the day's activity of the stock. Next,

George checks the stock of a competing hard-drive storage

company, Seagate technologies. Later, George discovers

that he is getting quotes for both IBM and Seagate updated

every half hour, as well as business news about each

company.

Using eye-gaze information, Suitor can determine what

application George is looking at or what information George

is reading in the scrolling display. Suitor can use this as

positive relevance feedback to adjust its model of George

and thus to provide more timely information. Suppose

George continues to be interested in investing in hard-

drive storage technology, always reading the stock quotes

for IBM and Seagate but ignoring quotes for other compa-

nies such as General Electric. After a while, stock quotes for

IBM and Seagate continue appearing regularly but quotes

for General Electric appear far less frequently. Suitor does

not require the user to maintain a list of stock symbols but

rather it infers from ordinary behavior what stock prices to

display.

Now suppose George is working in Word and glances

down to read a headline that looks interesting. A browser

window opens and loads the story of the headline he has just

read. After glancing brie¯y at the story, George decides that

it is not interesting and continues working in Word. A few

minutes later, George reads another headline that seems

interesting. The story for it loads in the open browser

window and he spends time reading it. Headlines of related

stories begin appearing in the scrolling display. By reading

or clicking any of the related headlines, the associated story

can be obtained. Because George takes the time to read the

stories behind some of the headlines, Suitor infers that he

might be interested in reading related stories as well.

Because these stories appear in a new browser window, it

does not interfere with current browsing or with any other

current task. Suitor does not take control of any task or force

the user to perform any speci®c action.

Suitor can take advantage of multi-modal information to

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110 105



help it to predict better what is likely to be of interest to the

user and to create an accurate user model. Suppose George

begins editing his resume and then starts to search the web

for employment opportunities. He goes to Sun Microsys-

tems's web site to see current job listings. Two openings

at other companies in System Administration Ð George's

®eld Ð appear in the scrolling display. He clicks on both

listings and two browser windows appear with details of the

positions. One of the positions offers more money than Sun

but George continues to look for more options. He has heard

that Hewlett Packard is a good place to work so he goes to

their main web site. In the scrolling display appears a short-

cut URL for going directly to HP's job listings. Clicking on

this URL, George investigates employment at HP.

Suitor can also use eye-gaze information to help disam-

biguate user interests. Suppose George is reading a maga-

zine in his web browser but skips over most of the articles

until he comes to one on the design of the new US currency.

Tracking George's gaze, Suitor knows that this is the only

topic he has actually read. In the scrolling display, there is a

TV listing for a PBS special about the new currency. By

clicking on the listing, George gets the times and days he

can catch the show. In the future, Suitor could set a VCR to

record relevant programs so that they can be viewed at a

convenient time.

Suitor also contains agents that interface with the Palm-

Pilot to upload text. The PalmPilot can act as a peripheral

display or as a mobile information delivery device. Suppose

George has been busy all day and has not had time to

explore any of Suitor's suggestions. Suitor can upload

news stories, stock quotes, employment listings, movie

schedules, and TV listings directly to his PalmPilot before

he leaves. Riding home on the bus George can catch up on

the news and plan his evening. A program in the PalmPilot

keeps track of the information read so that it can repeat back

to Suitor what has been viewed on this device. To see how

Suitor can implement these scenarios, we now turn to details

of its architecture and implementation.

3. Architecture and implementation

Suitor provides an architecture for creating simple

programs Ð agents, to investigate user activity, re¯ect on

that activity, gather information from the user's computer or

the outside world, and communicate relevant information to

the user. More precisely, Suitor implements an interprocess

communication mechanism that enables separate programs

to work together to: (a) gather information about the user

and the world; (b) process and make inferences about the

user; and (c) report information to the user. This mechanism

amounts to a shared blackboard and a corresponding scheme

for dispatching information posted on the blackboard to

interested agents. In addition to a communication scheme,

Suitor also provides the infrastructure for developing and

deploying agents, for remembering what the user is inter-

ested in, and for reporting to the user through a variety of

means, such as a scrolling headline display, email, or Palm-

Pilot.1

Implemented in Java, Suitor programmers can create

modules and applications that track user behavior, infer

user interest, ®nd related information, and display that infor-

mation to the user. Modules are groups of agents that

perform a speci®c function; for instance, we have imple-

mented a gaze module that monitors where the user is look-

ing, what application is being looked at, and what text is

being read. Modules run in the Suitor application and share

the Suitor Java/VM. Applications are standalone programs

that run independently of Suitor yet contain agents that can

communicate with Suitor through Java's remote method

invocation (RMI).

Agents communicate with one another through a

common currency of facts. These might represent a noti®ca-

tion or the text of a news story. All facts know which agent

submitted them, what time they were submitted, when they

should expire, and what other facts they depend on. All

agents registered to listen for a certain type of fact are

invoked when that type of fact is posted to the blackboard.

Facts remain on the blackboard until they either expire or

are explicitly retracted. Suitor periodically scans through all

facts and removes those that have expired. An agent can also

remove facts by asking Suitor to retract all facts it has

submitted. This is useful in trying to keep up with the user's

ever-changing interests.

There are four main functions a Suitor module might

perform: watching the user (user input), remembering user

actions (user model), getting information from local and

remote databases (information gathering), and making

suggestions (peripheral display). To create the scenarios

described previously, modules were created that (a) monitor

what application is being used; (b) monitor what web page is

being viewed; (c) track where the user is looking on the

screen; (d) record text input from the keyboard; (e) maintain

a user model of descriptive keywords; (f) ®nd stock prices

and news; and (g) download information to a PalmPilot. A

separate scrolling display application (a news ticker) was

created to output information unobtrusively at the bottom of

the screen.

3.1. Observing users and the world

Investigator agents gather information from the world

outside of Suitor. They can monitor user actions, watch a

web site for new information, or scan through local and

remote databases. Investigators can submit facts about the

user or the world when some event occurs or when some

data has been collected. Investigators do not operate on

facts; they merely monitor state. The Suitor architecture

allows developers to create a wide range of input sensors

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110106

1 See Ref. [7] for details of our initial implementation, which was called

deFacto.



and agents. Sensors can monitor users and the world through

multiple modalities, including vision, sound, and touch.

Investigator agents can be created to gather any type of

information the developer wants including user interactions

with the operating system, user identity, and information

from networked databases on the Internet. So far, we have

created investigators that monitor running applications,

applications with focus, keyboard input, mouse movements,

web browsing, web searching, news information on the

Web, stock quotes, and user eye gaze.

One focus of our work has been on eye-gaze, as it can be a

powerful source of evidence on user information interests.

The user's eye-gaze is monitored by the gaze module that

calculates the coordinates of gaze direction at 30 frames per

sec. The camera uses an array of LED's to project infrared

light to the user's eye, resulting in a re¯ectance point on the

cornea and the illumination of the pupil. With the re¯ec-

tance point and the center point of the pupil along with a

short calibration session, the location of eye-gaze can be

easily calculated to within half an inch (see also Refs.

[8,9] for information on our gaze-tracking system). Within

the gaze module, there are a set of investigators and re¯ec-

tors to process incoming gaze data and determine if the user

is viewing information in the ticker display, looking at a

certain application, or looking at news stories in the brow-

ser. Recently, Suitor's sensing abilities have been expanded

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110 107

Fig. 2. Example pattern of eye movements during reading overlaid on web page text.



with a new investigator that determines whether the user is

reading text on the screen. This investigator watches the

pattern of eye-gaze data and tries to detect and track when

the user is reading.

The reading investigator works by ®rst stabilizing the raw

gaze data, classifying each eye movement into one of seven

categories, pooling category evidence, and switching from

detection to read-tracking mode based on the pooled

evidence. Stabilization is done by quantizing the raw gaze

data, that is, averaging the data over non-overlapping

100 ms intervals. Stabilization helps reduce the in¯uence

of micro-saccades and gaze measurement errors (see

Fig. 2). Eye movements are then classi®ed into one of

seven categories: read forward, skim forward, scan jump,

skim jump, regression, anticipatory saccade, or reset jump.

Each category either adds points to the evidence counter,

takes points away, or does not change the counter. Eye

movements such as read forward serves as evidence for

reading, and thus add points to the evidence pool, whereas

movements such as regressions server as evidence against

reading and thus take points away from those accumulated

in the evidence pool. When the pool reaches a threshold

value, then reading is detected and the mode changes to

read tracking. In read-tracking mode, evidence is no longer

accumulated and the only way to break out of this mode is to

detect a scan jump eye movement. Preliminary empirical

tests have shown this reading-detection algorithm provides

both robust and ef®cient reading detection.

3.2. Modeling users

Re¯ector agents can submit facts and operate on facts.

That is, in producing their own facts, re¯ectors think about

(re¯ect on) the facts that are submitted by other agents.

Re¯ectors essentially decide what to do about the informa-

tion discovered by investigators and other re¯ectors. They

can be used, for instance, to construct a model of the user's

interests.

Suitor's user model is simple. Text gathered by investi-

gators monitoring user interactions with the computer are

combined and analyzed to produce a small list of key words.

Of course, Suitor can use other sorts of user models, includ-

ing statistical or probabilistic models [10,11]. In the case we

have implemented, text is gathered from user keyboard

input, from user email, from web pages read, and from

®les visited in Emacs. Key words are derived from these

text sources by determining the frequency of the words in

the pooled text at a given time relative to the frequency of

the words overall. The keywords are those words whose

frequency is high in the current set relative to their overall

frequency (following, for instance, Refs. [12,13]).

The user's current interest is represented as a list of words

that distinguish the sorts of text being written and read at

any given time. Facts about what the user is typing and what

the user is viewing constantly ¯ow into Suitor's blackboard

from investigator agents. As these facts arrive, re¯ector

agents determine the word frequencies and update the

current list of key words, that is, the current model of

the user. As the user's interests change over time Ð as

the user's activities shift from one task to another, the key

words that represent the user's interests change. Thus, our

user model contains both the user's current interest Ð

current list of key words, and the user's history of interests

Ð old lists of key words.

3.3. Displaying suggestions

Actor agents are essentially the inverse of investigators;

they act on facts that have been submitted to Suitor but they

cannot submit facts themselves. Actors process facts from

re¯ectors and perform some action (side effect) on the

outside world, such as displaying information to the user.

For instance, our scrolling ticker displays headlines and

other facts to the user. Before actor agents select facts

from the blackboard for display on the screen, re¯ector

agents prioritize the news and other facts that investigator

agents have gathered by comparing them with the user

model. More precisely, before information is displayed, it

is rated according to how much it overlaps the current and

long-term model of user interests. Only facts that have some

overlap with the user's interest are selected for display, and

then they are ordered according to how much they overlap.

An attentive system like Suitor ought to present sugges-

tions to the user that are not distracting, yet are timely and

relevant to the task at hand. Constant monitoring of user

actions and the concomitant modeling of user interests are

meant to ensure that suggestions are timely and relevant. For

its display, Suitor provides a one-line scrolling ticker at the

bottom of the screen to show the user its suggestions. This

sort of scrolling display is intended to be both informative

and unobtrusive. Our hope is that scrolling displays are at

least a little like the automobile's speedometer. The auto-

mobile driver's main task is driving, but speed information

displayed in the periphery is not overly distracting and at the

same time informative. The speedometer is designed

perfectly to convey non-essential but useful information

[14]. It embodies a kind of peripheral information Ð infor-

mation is not central to the current task, but that might be

helpful to it or that might be informative in other ways. Such

an interface is peripheral because the normal mechanism for

accomplishing the task is still available. The interface

simply seeks to make the task easier and richer. In any

event, to try to ensure that Suitor's suggestions are not too

distracting, we have begun to experimentally test the rela-

tive informativeness and distractibility of a variety of scrol-

ling ticker displays, and we have found that in fact these

sorts of displays can be used effectively to provide periph-

eral information (see Ref. [4]).

3.4. Putting it all together

Having described the various sorts of agents and func-

tions available in Suitor, we can now show an example of

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110108



Suitor in action. In this scenario, news headlines are scrol-

ling by in the ticker display, and the user gazes down and

looks at one. Because the user reads a particular headline

(indicating interest in the topic), the news story associated

with it is displayed in a browser window.

More precisely, the gaze module has an investigator agent

that periodically gets eye-gaze locations from a sensing

device (camera). A re¯ector agent, triggered when gaze

information is posted to the blackboard, determines whether

or not the user is reading. Another re¯ector agent, also trig-

gered when gaze information is posted to the blackboard,

determines if the gaze was in a browser window. Yet

another re¯ector agent checks if both reading is detected

and gaze was in a browser window and sends a request to

have related information sent to the peripheral display.

Tracking eye gaze in particular seems a very powerful

means for gathering evidence about user interest [15]. If the

user pays attention to certain displayed information, the

system can take that as positive relevance feedback, effec-

tively suggesting that it display more of the same sort of

information. Conversely, if the user does not pay attention

to certain information, the system can take that as negative

feedback, suggesting that it not display similar information

again. In these cases, gaze is not used to control the system

explicitly, such as for directly selecting what to display;

rather, gaze is at least one step removed, ®guring in the

calculation of user interest, which in turn ®gures in what

is displayed.

In this way, Suitor provides a non-command interface, as

it relies on pooled evidence to respond to user actions. That

is, Suitor relies on natural eye movements and other ordin-

ary user actions as control signals rather than on explicit

user commands [16]. The user is not forced to check a

box for a category of news and then click a button for

delivery of news. Rather, Suitor works behinds the scenes

inferring from normal user actions what information to

display. The option is available, however, for the user to

interact with Suitor in a more direct manner. For example, if

Suitor displays a headline that the user wants additional

information on, the user can click the headline and the full

story will appear in the current browser window. Suitor can

then infer from this action that the user is interested in the

speci®c topic of the headline and to a lesser extent, the

general category of the headline (i.e. sports, world news,

and politics). Thus, positive relevance feedback can be

obtained by watching what the user does when interacting

with the peripheral information display.

4. Related work

We are not the ®rst build attentive systems. In the domain

of web browsing, for instance, Lieberman's Letizia [12,17]

is attentive, as it monitor's web use and scouts the web

ahead of the user, determining the potential relevance of

links on each page viewed. Letizia observes browsing,

models user interest as a set of key words, and displays

suggestions in a browser window placed off to the side.

Rhode's Margin Notes system is similar [3].

In the domain of text editing, the Remembrance Agent

(RA) is attentive because it monitors user input from several

sources and displays relevant documents in a non-distract-

ing manner [13]. The RA watches input from the keyboard

and text information in Emacs, suggesting related informa-

tion culled from text ®les located on the user's computer.

Some of the text information scanned includes old e-mail,

papers, ®les of notes, as well as other text documents. The

RA determines the similarity of the text documents and the

current text by the relative frequency of words common to

both. If relevant documents are found, the ®rst line of each is

displayed in a window at the bottom of the screen. The RA

has also been implemented on wearable computer systems

and collects more evidence about the user, including loca-

tion (through GPS), people nearby, and timestamp [18].

This information is more about the context than the user's

actions. Like the desktop version, the wearable RA presents

relevant information in an unobtrusive window at the

bottom of a heads-up-display.

Help systems can also be attentive, but these typically

monitor fewer input sources (often only one), have pre-

existing user models (expert models), and focus on user

performance in a single task. Software help agents most

often watch command sequences for a speci®c application

[11,19] or text from keyboard input [20]. COACH (Cogni-

tive Adaptive Computer Help) [20] is a good example of an

attentive interface because it continuously updates its user

model based on keyboard input, offers help when the user is

having a problem, and displays help peripherally.

5. Conclusions

Attentive systems attend to the user, gather information

about the world, model user interests, and communicate

with the user in a non-distracting way through peripheral

displays. Attentive information systems work cooperatively

with users to learn their informational interests and to facil-

itate their needs and goals. Suitor is a framework for devel-

oping attentive information systems. We have implemented

methods for observing user behavior that ranges from

spying on application usage and text typed to tracking eye

gaze and web browsing. We have implemented a simple

user model from the words typed and the words read that

describes the user's interest at any time. We have imple-

mented and tested schemes for displaying suggestions

peripherally.

Within the Suitor architecture, a wide variety of attentive

information systems can be created, from large adaptive

applications to speci®c software tools. Suitor's modularity

allows incremental development, adding agents and

modules as new sensors, devices, and displays become

available. As agents incorporating new technologies are

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110 109



developed and deployed, we believe that such systems will

show the bene®ts that come from truly multi-modal, inter-

active, and attentive interfaces, namely naturalness, robust-

ness, and ef®ciency.

Acknowledgements

Gentry Underwood contributed greatly to Suitor. Carlos

Morimoto and Myron Flickner developed our gaze tracking

system. Denis Lalanne implemented our user model. Teenie

Matlock provided many helpful comments on an early draft

of this paper.

References

[1] TiVo Inc, Welcome to TiVo, Available at http://www.tivo.com/.

[2] Amazon.com Inc, Amazon.com Ð Earth's Biggest selection, Avail-

able at http://www.amazon.com/.

[3] B.J. Rhodes, Margin notes: building contextually aware associative

memory, Proceedings of the Conference on Intelligent User Interfaces

(IUI 2000), ACM Press, New York, 2000.

[4] P.P. Maglio, C.S. Campbell, Tradeoffs in the display of peripheral

information, Proceedings of the Conference on Human Factors in

Computing Systems (CHI 2000), ACM Press, New York, 2000.

[5] N. Moray, Monitoring behavior and supervisory control, in: K.R.

Boff, L. Kaufman, J.P. Thomas (Eds.), Handbook of Perception and

Human Performance, vol. II, Wiley, New York, 1986.

[6] PointCast Inc, Welcome to PointCast, Available at http://www.point-

cast.com/.

[7] G. Underwood, P.P. Maglio, R. Barrett, User centered push for timely

information delivery, Computer Networks and ISDN Systems (1998)

30.

[8] IBM Research, Blueeyes, Available at http://www.almaden.ibm.com/

cs/blueeyes/.

[9] S. Zhai, C. Morimoto, S. Ihde, Manual input cascaded (MAGIC)

pointing, Proceedings of the Conference on Human Factors in

Computing Systems CHI '99, ACM Press, New York, 1999.

[10] D. Heckerman, E. Horvitz, Inferring informational goals from free-

text queries: a bayesian approach, Proceedings of the Fourteenth

Conference on Uncertainty in Arti®cial Intelligence, 1998, pp. 230±

237.

[11] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse, The

Lumiere project: Bayesian user modeling for inferring the goals and

needs of software users, Proceedings of the Fourteenth Conference on

Uncertainty in Arti®cial Intelligence, 1998, pp. 256±265.

[12] H. Lieberman, Letizia: an agent that assists web browsing, Interna-

tional Joint Conference on Arti®cial Intelligence, AAAI Press, 1995,

pp. 924±929.

[13] B.J. Rhodes, T. Starner, The remembrance agent: a continuously

running information retrieval system, Proceedings of the First Inter-

national Conference on the Practical Application of Intelligent Agents

and Multiagent Technology, 1996, pp. 487±495.

[14] D.A. Norman, Things that make us smart, Addison-Wesley, Reading,

MA, 1993.

[15] I. Starker, R.A. Bolt, A gaze-responsive self-disclosing display,

Proceedings of the Conference on Human Factors in Computing

Systems CHI '90), ACM Press, New York, 1990.

[16] R.J.K. Jacob, Eye movement-based human computer interaction tech-

niques: toward non-command interfaces, in: R. Hartson, D. Hix

(Eds.), Advances in Human Computer Interaction, vol. 4, Ablex,

Norwood, NJ, 1993, pp. 151±190.

[17] H. Lieberman, Autonomous interface agents, Proceedings of the

Conference on Human Factors in Computing Systems CHI '97,

1997, pp. 67±74.

[18] B.J. Rhodes, The wearable remembrance agent: a system for

augmenting memory, Personal Technologies 1 (1997) 218±224.

[19] F. Linton, D. Joy, H. Schaefer, Building user and expert models by

long-term observation of application usage, Proceedings of the

Seventh International Conference on User Modeling, Springer,

London, 1999, pp. 129±138.

[20] T. Selker, COACH: a teaching agent that learns, Communications of

the ACM (1994) 37.

P.P. Maglio et al. / Knowledge-Based Systems 14 (2001) 103±110110


