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ABSTRACT
Human performance falls off predictably with excessive task
difficulty. This paper reports on a search for a task load esti-
mation metric. Of the five physiological signals analyzed from
a multitasking study, only pupil dilation measures correlated
well with real-time task load. The paper introduces a novel
task load estimation model based on pupil dilation measures.
We demonstrate its effectiveness in a multitasking driving
scenario. Autonomous mediation of notifications using this
model significantly improved user task performance compared
to no mediation. The model showed promise even when used
outside in a car. Results were achieved using low-cost cameras
and open-source measurement tools lending to its potential to
be used broadly.

ACM Classification Keywords
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Author Keywords
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INTRODUCTION
People use ubiquitous computing platforms like the mobile
phone to access information and interact with others, even
when they are socially or physically engaged. People, however,
have finite mental resources and can only process a limited
amount of information without degradation of task perfor-
mance. Despite this being the case, there is an increasing
trend towards computers being proactive and providing infor-
mation to the user without being prompted. For cognitively
challenging activities like driving, divided attention can have
dire consequences. Thus, there is a need for systems to gauge
the load on this mental resource in order to predict or preempt
degradation in task performance, while interacting with a user.
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While progress has been made towards gauging this load, we
are still a long way off from being able to measure it at a real-
time fine-grained level. In the future, such capabilities might
avert human mistakes in situations of divided attention. For
instance, voice interaction might become the most efficient
way for a user to interact with a system, when their manual
and visual resources are already occupied. By using a rapid
and fine-grained cognitive load measure, dialog or proactive
agents would be able to track the ebbs and flows of the load
being experienced by the user in real-time. This would allow
it to preempt disfluencies and other irregularities in speech, as
well as to time its responses and other actions, so as to prevent
overloading the user. In the driving scenario, it has been shown
that passengers adapt their conversation to the driving situation,
which leaves the driver with more resources to perform the
driving task when it gets difficult [5, 9]. Interactive agents
should aim to emulate such considerate behaviors.

Cognitive load can be gauged by directly modelling the driver
via psychophysiological measures, or by modelling driving
context and its effect on the driver, or by jointly modelling
both [18]. Compared to modelling the external driving context,
less progress has been made in modelling the driver’s internal
state in order to identify when to interrupt them. One advan-
tage of the internal state approach is the potential for these
models to generalize to other domains. Modelling external
context requires specific sensors and techniques to be consid-
ered for each domain separately. Furthermore, a physiological-
based approach can be tuned for each user individually, as
different users might experience external contexts differently.
Recent advances in wearable technologies suggest that mon-
itoring at least a few physiological signals in everyday life
might become a feasible option.

In this paper, we evaluate several signals that might be used as
part of a psychophysiological approach to gauging cognitive
load. We wanted to capture the temporal aspects of divided
attention — the transitions in load when addressing and recov-
ering from interruptions, for example. At the same time, we
wanted to facilitate data collection that was repeatable, with
real-time performance measures that were responsive to task
load. To meet these goals, we designed a multitasking scenario
with a driving-like primary task, and an intermittent secondary
task of attending and responding to notifications. As part of
our initial explorations, we present results from two separate
user studies. In the first set of results, pupil dilation measures
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were used to build classification models that can detect which
tasks the user is engaged in. We show how the performance
of the model varies with changes in the modality and timing
of notifications. We do this for each user, as well as across all
users. To evaluate the feasibility of using such a model built
on pupil dilation measures we conducted a second study. Here
the classification model was used to autonomously mediate
notifications to users in real-time. We demonstrate its effec-
tiveness by analyzing user task performance with and without
mediation. In the following sections, we provide background
and discuss related work, before describing the two studies
and their results in detail.

RELATED WORK
In cognitive psychology, there is a general consensus that
people have limited and measurable cognitive capacities for
performing mental tasks [26]. Furthermore, engaging in one
mental task interferes with the ability to engage in other tasks,
and can result in reduced performance on some or all of the
tasks as a consequence [17]. To characterize the demand
on these limited resources, psychologists have employed no-
tions like cognitive load and mental workload, which gains
definition through the experimental methods that are used to
measure it [19].

Measuring Cognitive Load
Cognitive load can be assessed using data gathered from three
empirical methods: subjective data using rating scales, per-
formance data using primary and secondary task techniques,
and psychophysiological data from sensors [29]. Self-ratings,
being post-hoc and subjective in nature, tend to be inaccu-
rate and impractical to use when automated and immediate
assessment is required. Secondary task techniques are based
on the assumption that performance on a secondary measure
reflects the level of cognitive load imposed by a primary task.
A secondary task can be as simple as detecting a visual or
auditory signal, and can be measured in terms of reaction
time, accuracy, and error rate. However, in contexts where the
secondary task interferes with the primary task, physiological
proxies that can measure gross reaction to task load are needed
to assess cognitive load.

Psychophysiological Measures

Psychophysiological techniques are based on the assump-
tion that changes in cognitive functioning cause physiological
changes. An increase in cortical activity causes a brief, small
autonomic nervous response, which is reflected in signals such
as heart rate (HR) and heart rate variability (HRV) [11, 27,36],
electroencephalogram (EEG) [30, 36], electrocardiogram
(ECG) [30], electrodermal activity (EDA) [14, 31], respira-
tion [27], and heat flux [12], eye movements and blink in-
terval [3, 14, 15, 36] and pupillary dilations. Our dataset in-
cludes most of these signals as well as additional signals that
have been shown to be sensitive to affect like pulse transit
time (PTT), facial electromyography (EMG) and skin temper-
ature [22, 28].

In particular, brain activity as measured through event-related
potentials using EEG, or as inferred from pupillary responses
have received more attention recently because of their high

sensitivity and low latency [1, 19, 24]. There has been very
little work that correlates these measures with the other phys-
iological measures, or demonstrates how to effectively align
them. Furthermore, to the best of our knowledge this is the
only work that has focused on tracking cognitive load that
is rapidly and randomly changing, since we are interested in
teasing out the dynamic nature of instantaneous cognitive load.
Lastly, prior work has typically focused on cognitive load aris-
ing in single-task scenarios like document editing [15], and
traffic control management [31]. In contrast, we employ an
increasingly common multitasking scenario, aspects of which
we briefly review below.

Multitasking Scenarios
In multitasking scenarios, the distribution of cognitive re-
sources when engaged in two or more tasks is not very well
understood. This makes it difficult to assess and predict work-
load that will be experienced by the user. Theories have been
proposed to model how multiple tasks might compete for the
same information processing resources [2, 35]. One widely
used approach that has been shown to fit data from multitask
studies is Wickens’ multiple resource theory. This attempts to
characterize the potential interference between multiple tasks
in terms of dimensions of stages (perceptual and cognitive vs.
spatial), sensory modalities (visual vs. auditory), codes (vi-
sual vs. spatial), and visual channels (focal vs. ambient) [35].
Performance will deteriorate when demand for one or more
tasks along a particular dimension exceeds capacity.

In the case of driving and notification comprehension, both
tasks compete for resources along the stages dimension. We
would expect performance to deteriorate when there is an
increased demand for the shared perceptual resources, i.e.
when driving is hard and/or when the notification is difficult to
comprehend. If the notification is visual, both tasks might also
compete along the modality and visual channel dimensions.
We would expect performance deterioration to be greater for
visual notifications.

Driving and Language

Listening and responding to another person while driving a
car has been widely studied, and has been shown to effect driv-
ing performance, particularly with remote conversants [21].
Passengers sitting next to a driver are able to adapt their con-
versation to the traffic situation, allowing the driver to focus on
driving when it becomes difficult [5, 9]. These findings have
motivated research towards building dialog systems that are
situation-aware and interrupt themselves when required [20].
As mentioned earlier, the focus in most of this work is on
monitoring the driving environment, and less on determining
the cognitive load of the driver. Recently, there has been an
interest in studying the effect that complex linguistic process-
ing can have on driving using physiological measures of pupil
dilation and skin conductance [8].

Mediation
Successful dual-task scenarios depend on the availability and
requirements of cognitive resources for the secondary task
given resource consumption by the primary task [34]. This
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presents opportunities to increase people’s ability to success-
fully handle interruptions, and prevent expensive errors. Mc-
Farlane’s seminal work proposed four methods for coordinat-
ing interruptions, including immediate, negotiated, mediated
and scheduled [25]. Mediation has been widely studied in
the desktop computing domain [13, 16], but has not been
adequately explored in post-desktop, mobile situations. We
believe that ours is also the first study to present results on
autonomous mediation using a psychophysiological measure.

STUDY 1: DYNAMIC TASK LOAD ESTIMATION
Our goals in this study were to:

• Collect a dataset1 consisting of psychophysiological signals
from users experiencing fluctuating task loads in a multi-
tasking scenario

• Experiment with building models based on psychophysi-
ological signals that can rapidly track cognitive load in a
multitasking scenario

• Study the impact that the timing and modality of an intermit-
tent secondary notification task has on the load experienced
by the user

The appeal of testing in real world scenarios is transfer of
results. But such experiments suffer from lack of repeatability
and reproducibility because of the large number of variables
involved. Repeating a route introduces landmarks that become
familiar and changes performance. Events of interest happen
unpredictably and infrequently. Establishing ground truth
is also non-trivial and sometimes requires manual effort like
scoring or annotating video recordings, etc. Experiments in the
lab can circumvent a lot of these shortcomings by abstracting
out the problem. A common practice in psychophysiology,
however, is to have a control condition, followed by a test
condition, with a rest period in between. As a consequence,
the temporal aspects of psychophysiological signals as they
fluctuate are lost.

In this study, we wanted the advantage of the lab setting, while
still grappling with some of the complexity of real world data.
In particular, we wanted to capture the temporal aspects of
fluctuating psychophysiological signals while a participant is
intermittently multitasking. For the primary task, we chose to
use the established ConTRe (Continuous Tracking and Reac-
tion) task [23], which provides a highly controlled yet unpre-
dictable task load for the participant. This allows for consistent
and replicable analysis. For the secondary task, the user was
intermittently presented with notification prompts that they
had to attend and respond to. The timing (mediated vs. non-
mediated) and modality (audio vs. visual) of the notifications
were treated as independent variables to investigate their im-
pact on the load experienced by the user.

The study was setup so that the driving task would randomly
switch between low and high workloads. This was done to
simulate a typical driving scenario where drivers episodically
experience high workload when they are entering/exiting high-
ways, changing lanes, following navigation instructions, etc.
1will be hosted at http://rahulrajan.com/physio_data

Figure 1. Screenshot of the ConTRe Task that displays the yellow refer-
ence cylinder with the traffic light on top, and the blue tracking cylinder.

In the mediated condition, the operator would send notifi-
cations only during the low driving workload condition, in
contrast to their random delivery in the non-mediated condi-
tion. With regards to modality, audio notifications were deliv-
ered via speakers, and visual notifications through a heads-up
display (HUD). The audio notifications were created using
Apple’s text-to-speech engine on OS X Yosemite (Speaking
voice: Alex; Speaking rate: Normal). The HUD used was
a Google Glass, which projects the screen at a working dis-
tance of 3.5 m, approximately 35° elevated from the primary
position of the eye.

Design
The study was designed as a 2 (Audio/Visual modes) X
2 (Mediated/Non-mediated conditions) repeated-measures
within-subjects study. To control for possible effects of order,
the study was double counterbalanced for the mode and con-
dition factors. Additionally, there was a baseline for both the
low and high driving workload conditions.

Participants
20 people (10 male, 10 female) participated in our study, re-
cruited through a call sent out to students selected randomly
from a graduate school population. The mean age of the par-
ticipants was 26.4 years, with a standard deviation of 2.7 years.
Participants were rewarded with $40 gift cards for completing
the study.

Tasks
We elaborate below on the design of the primary ConTRe task
and the secondary notification task that make up the multitask-
ing scenario.

Primary Task (T1): ConTRe

The ConTRe task comes as an add-on for OpenDS, an open-
source driving simulator [23]. It is an abstracted and simplified
task that is comprised of actions required for normal driving,
i.e. operating the brake and acceleration pedals, as well as
using the steering wheel. This focuses the user’s task and
simplifies the recording of tracking behavior. Fine-grained
measures of performance on the primary task relative to the
secondary task requests can be obtained, which is necessary
for our investigation.

The vehicle in Figure 1 moves with a constant speed on a
unidirectional straight road consisting of two lanes. The sim-
ulator shows two cylinders at a constant distance in front of

3



the vehicle: a yellow reference cylinder, and a blue tracking
cylinder. The yellow reference cylinder moves autonomously
and unpredictably. The lateral position of the blue tracking
cylinder is controlled by the user through the use of the steer-
ing wheel. The cylinder moves left or right depending on
the direction and angular velocity of the steering wheel, i.e
the steering wheel controls the cylinder’s lateral acceleration.
The user’s goal is to track the yellow reference cylinder, by
overlapping it with the steering wheel-controlled blue cylinder,
as closely as possible. Effectively, this corresponds to a task
where the user has to follow a curvy road. For the low and
high task load conditions, the lateral speed of the reference
cylinder was set to values that were empirically determined to
create low and high workloads for the user, respectively.

There is a traffic light with two colors placed on top of the
yellow reference cylinder. The top light turns on red, whereas
the bottom one turns on green. At any time, neither of the
lights or only one is turned on. The red light requires that
the user respond by depressing the brake pedal, while the
green light corresponds to the accelerator pedal. This operates
independently of the steering function. As soon as the user
reacts to the light by depressing the correct pedal, the light
turns off.

Secondary Task (T2): Notifications

The notification task was based on cognitive tests frequently
used to measure working memory capacity [6]. Working mem-
ory has been purported to be involved in a wide range of
complex cognitive behaviors, such as comprehension, reason-
ing, and problem solving as it is thought to reflect primarily
domain-general, executive attention demands of the task [10].
In this work we do not aim to measure working memory per se,
but instead want to measure the effect of engaging in a com-
plex cognitive secondary task. Thus, we modify the cognitive
tests for our purposes as described below.

In each condition, subjects were presented with a series of
twenty items, which included ten equations and ten sentences
taken from widely used complex span tasks [6] (see Table 1).
The math equations and sentences are representative of the
symbolic and verbal types of notifications, respectively, that
users typically receive. Using standardized stimuli allows for
consistency and replicability. Both types of notifications were
randomly interspersed, so as to prevent the driver from getting
into a rhythm of expecting either one. After the driver had
read or listened to each item, they verbally indicated if the
notification was true or false. Sentences are true when they
are make sense, math equations are true when they are valid.

After each item, the subject was presented with an isolated
letter, which represents something they had to remember from
the notification. After two, three, or four items, the driving
task was paused, and they were asked to recall the letters in
sequence. This was done to mimic the behavior of drivers
who usually attend to notifications while driving and respond
to them, or perform other tasks that require more attention
when stopped at a light, or while driving down a road with no
noticeable gradient or curve at a constant speed [18].

Type Notification

Math 2/2+1 = 1
Sentence After yelling at the game, I knew I

would have a tall voice

Table 1. Examples of the two types of notifications

Apparatus
The Robot Operating System (ROS Hydro) was used to syn-
chronize signals from the different components of the experi-
mental setup. This includes data from the simulator, physio-
logical sensors, and the audio-visual feeds, all of which were
being sampled at different frequencies, on separate machines.
Each component publishes messages via ROS Nodes to the
server, which synchronizes the data and writes it to disk. A
Logitech camera, a mic, and audio mixer were used to capture
audio-visual information. Participants controlled the simulator
using a Logitech G27 Racing Wheel.

Physiological Sensors
Physiological signals were captured and recorded using the
Biopac’s BioNomadix monitoring devices for Electrocardio-
gram (ECG), Photoplethysmograph (PPG), Electromyogram
(EMG), respiration, skin temperature, Electrodermal Activity
(EDA), and Impedance Cardiography (ICG). Pupil dilation
and eye gaze was captured using Pupil Pro hardware2, which
is a head-mounted mobile eye-tracking platform.

Since the hands of the participant were occupied for driving,
we placed the PPG and EDA sensors on the participant’s left
toe & instep, respectively [32]. The facial EMG sensor was
placed just above their left eyebrow to measure activation
of the corrugator supercilii muscle, which is associated with
frowning. Two skin temperature sensors were placed on the
tip of the nose and on the left cheek. The ECG, impedance car-
diography, and respiration sensors were placed in the default
positions, i.e., on the chest and neck.

Methodology
Participants were guided through an informed consent pro-
cess, followed by an overview of the study. They were aided
through the process of having a number of sensors attached
to their body for the purposes of recording their physiological
responses. The participant was then seated in the simulator
and given a demonstration of how visual notifications would
be presented on the HUD, and audio notifications delivered
over speakers.

The dataset collection was split in two parts: baseline and
experimental. The baseline section records physiological mea-
sures for low and high driving workload separately. The exper-
imental section records physiological measures for the multi-
tasking scenario described in Section 3.3.

Baseline

Each participant was taken through a series of practice runs
to get them comfortable with the primary driving task. When
2http://pupil-labs.com/pupil/
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Physiological Measures Performance Measures

Raw Derivative ConTRe Task (T1) Notification Task (T2)

Electrocardiogram (ECG) Pulse Transit Time (PTT) Steering Deviation Sentence Response Time
Photoplethysmograph (PPG) Inst. Heart Rate (IHR) Acceleration Reaction Time Sentence Accuracy
Impedance Cardiography(ICG) SKT B � SKT A (SKT) Acceleration Accuracy Math Response Time
Respiration Braking Reaction Time Math Accuracy
Electrodermal Activity (EDA) Braking Accuracy Recall Accuracy
Skin Temp. Nose (SKT A)
Skin Temp. Cheek (SKT B)
Electromyography (EMG)
Pupil Dilation
Eye Gaze

Table 2. Collection of measures available in the dataset.

Figure 2. Example physiological measures collected during an audio non-mediated experimental condition. Driving workload is represented as a step
function (1: High, 0: Low, -1: Pause). Colored regions delineate when the user was engaged in the primary driving task (T1; white regions), secondary
notification task (T2; orange regions), or both (T1 & T2; blue regions).

done with the practice, the low benchmark was recorded using
the low workload setting on the simulator. After a minute,
they were asked to repeat a series of ten sentences that were
read out to them, one-by-one, while they were still performing
the primary ConTRe task. The same routine was performed to
record the high benchmark using the high workload setting on
the simulator.

Experimental

This was followed by another set of practice rounds that com-
bined both the ConTRe task (with the randomly alternating
workloads) and the notifications task. The notification task
included a set of five items, three of which were equations,
with the rest being sentences. This provided the participants
with a sense of what to expect during the actual trials. The
practice trials could be repeated if necessary. The participants
then moved on to the experimental trials. Each participant had
a total of four trials, one for each condition. The entire study
lasted approximately 2 hours.

Data Processing
The dataset consists of a number of physiological and perfor-
mance measures which are tabulated in Table 2. We recorded
ten psychophysiological signals: EDA, EMG, skin tempera-
tures (nose and cheek), four signals based on cardio-respiatory
activity (ECG, PPG, ICG & respiration), and two based on eye
activity (gaze and pupil dilation). Apart from the eye-based
signals which were sampled at 30 Hz, the rest of the signals
were sampled at 2000 Hz.

Three derivative signals were also calculated. Instantaneous
heart rate (IHR) was obtained from the ECG signal using
the BioSig library3 which implements Berger’s algorithm [4].
Pulse Transit Time (PTT) was obtained by calculating the
difference in between the ECG R-wave peak time and the PPG
peak time, which is the time it takes for the pulse pressure
waveform to propagate through a length of the arterial tree.
Difference in skin temperature (SKT) was also calculated by
subtracting the temperature of the nose from that of the cheek.

3http://biosig.sourceforge.net/
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The performance measures encompass both the primary driv-
ing task and the secondary notification task. Of interest are
the reaction times and accuracies to the red and green light
stimuli, and the steering deviation in tracking the reference
cylinder. Also recorded are the performance measures for the
secondary notification task as shown in Table 2.

Preprocessing & Labelling

In this exploration, 5 of the 13 psychophysiological signals
collected were seen to be the easiest and most fruitful to ana-
lyze for dynamic task load modelling. They include IHR, PTT,
SKT, EDA and pupil dilation (Figure 2). These signals were
extracted from the collected data and down-sampled to 40 Hz
(except for pupil dilation which remains at its original sam-
pling rate of 30 Hz). Each signal was plotted, and thresholds
were determined to filter out unlikely values (from movement
artifacts, etc.). Data for each user was standardized (zero mean
& unit variance), prior to which outliers that were more than
three standard deviations from the average, were filtered out.

Two sets of labels are included in the dataset, a set each for the
primary and secondary task. By syncing with the timestamps
from both the task logs, we determined the precise primary and
secondary task conditions that the participant was under for
every physiological sample. The primary task labels denote if
the participant is in the low, high, or paused driving workload
condition (see Driving Workload in Figure 2). The logs from
the secondary task allow us to determine the periods during
which a participant was attending to a notification, i.e. blue
regions in Figure 2. The orange regions signify the recall
part of the secondary task, when the primary driving task was
paused.

Feature Extraction
We derived a number of statistical features on the main sig-
nal (x[n]), the derivative signal (x[n+1]� x[n]), and the per-
centage change ((x[n+1]� x[n])/x[n]⇤100). These features
include the mean, median, percentiles (10th, 25th, 75th, 90th),
ranges (between min and max, 10th and 90th percentiles, and
25th and 75th percentiles), skewness, and standard deviation.

Features were extracted using a sliding window. To capture
temporal properties, windows were overlapped, i.e. their step
size was smaller than their length. Different window lengths
and step sizes were considered. Specifically, the following
pairs of window and step sizes (seconds) were analyzed: (7,
1), (5, 1), (3, 1) and (3, 0.25).

Modelling for Multitasking Scenario
Based on the insights from Wilkin’s multiple resource the-
ory described in the Related Work section, the loads that the
primary and secondary tasks impose on the user are not mu-
tually exclusive. Both tasks compete for resources along the
stages dimension, and along the visual channel dimensions if
the notifications are visual. Hence it would be more prudent
for the classifier to make predictions on the load the user is
under for both tasks separately and simultaneously, instead
of attempting to make predictions on some notion of compos-
ite or absolute load. Thus, we can view this as a multi-label
classification problem. In this formulation, each window is
assigned two labels, where each label is drawn from the set

of labels that corresponds to the primary and secondary tasks.
Given the limited data to train the model on, we reduce our
task to a multi-label binary classification problem, and ignore
the specific states of the ConTRe (low/high workloads) and
notification (attending/recall) tasks. Essentially, at this stage,
we are simply trying to predict which tasks (T1 and/or T2) the
user is engaged in by analyzing the psychophysiological data.

A sliding window is labelled as T1 if for the duration of a win-
dow the participant is only engaged in the primary ConTRe
task. If the ConTRe task is paused, and the participant is en-
gaged in recall, the window is labelled as T2. If the participant
is attending to a notification while performing the ConTRe
task, the window is labelled as both T1 and T2. For simplic-
ity, the transitory unlabelled windows were discarded. The
features of the remaining windows, and their corresponding
multi-label assignments {T1,T2} were fed to a Random Forest
classifier, which is an ensemble technique that learns a number
of decision tree classifiers and aggregates their results. Models
were built across all users, as well as for each user separately
to account for individual differences in their psychophysiologi-
cal response. To evaluate the classifier’s performance, we used
leave-one-user-out cross-validation for the population models,
and 3-fold cross-validation for the individual user models.

The time it takes to comprehend a notification varies by par-
ticipant. This creates variation in the number of driving and
notification task labels generated per participant, which in turn
results in a varying baseline accuracy for each user because
of the class imbalance problem. Hence, instead of accuracy,
we use the Area Under the Receiver Operating Characteristic
Curve (ROC AUC) metric to evaluate the classifier, as it is
insensitive to class imbalance. ROC curves show the trade-offs
between higher sensitivity and higher specificity. Sensitivity
refers to the correct detection of a condition or state when it
is truly present. Specificity indicates the correct rejection of
a state when it is truly not present. The area under the ROC
curve is a measure of adequacy on both. Curves corresponding
to random or chance classification of 50% would fall close to
the diagonal, and result in an ROC AUC score of 0.5 regardless
of class imbalance, while the most successful classifications
would have an ROC AUC score close to 1.0.

Being a multi-label classification problem, the classifier out-
puts two probabilities simultaneously: one for the probability
of the sample belonging to the primary task (T1), and another
for the probability that the sample belongs to the secondary
task (T2). We report the macro-averaged ROC AUC scores
for the pair of labels, as a measure of how well the classifier is
simultaneously able to predict both labels (T1_T2). We also
report the ROC AUC score for each label, individually, to shed
light on how accurately the classifier is able to identify each
task.

Results
Of the five physiological signals analyzed, the pupil dilation
measures were the only signal to yield results that were much
better than random. For this reason, we only list and discuss
results using the pupil dilation measures. For the four window
and step size combinations considered, mean ROC AUC scores
for the population and individual models are shown in Table 3.
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Window,
Step (s)

Population Individual

T1_T2 T1 T2 T1_T2 T1 T2

7, 1 0.85 0.90 0.80 0.84 0.89 0.78
5, 1 0.84 0.89 0.78 0.83 0.88 0.78
3, 1 0.81 0.85 0.76 0.81 0.87 0.75

3, 0.25 0.80 0.86 0.75 0.80 0.86 0.74
Table 3. ROC AUC Scores for population and individual models using
different window and step sizes

Condition T1_T2 T1 T2

Non-mediated
Video 0.88 0.90 0.86
Audio 0.90 0.92 0.88

Overall 0.88 0.91 0.86
Mediated

Video 0.82 0.89 0.76
Audio 0.81 0.88 0.74

Overall 0.81 0.89 0.74
Table 4. Population-based ROC AUC Scores under different timing and
modality conditions.

A larger window size tends to provide better results, and this
trend holds for both the individual and population models.
The population scores are comparable to the average user
scores, which tells us that the model based on pupil dilations
is generalizable.

Table 3 also shows ROC AUC scores for predicting each label
individually. The scores indicate that the models are better
at identifying when the user is engaged in the primary driv-
ing task (T1) as compared to when the user is engaged in
the secondary notification task (T2). This might be because
of the differences in load induced by equation and sentence
notifications, and also from the differences in the notifications
being right or wrong. Our model doesn’t account for these yet,
but each can potentially be treated as a different class under a
label in the multi-label framework.

We also compared how varying the independent variables of
timing and modality impacted the ROC AUC scores. The
results for these experiments are tabulated in Table 4. Only
the analysis on the 7 second long windows are presented here
as similar trends were observed for the other combinations.
It is clear that mediating when notifications were sent had a
larger effect than modality on the model’s ability to identify
the secondary task. To explain this, we must remember that
in the mediated condition, the participant is sent notifications
when they are in the low driving-workload state. The multiple
resource theory predicts that the cognitive load on the user in
this state (low driving-workload + notification) is similar to
the cognitive load they experience when they are in the high
driving-workload state. Thus, in the mediated condition win-
dows where the user is driving with and without notification,
i.e. windows labelled {T1} and {T1,T2}, look similar. In the

non-mediated condition, this is not the case, as notifications
are also delivered in the high driving-workload states. This
allows the classifier to better identify the secondary task (T2)
in the non-mediated condition.

STUDY 2: AUTONOMOUS MEDIATION
A classifier was built and tested for its ability to mediate noti-
fications using real-time pupil dilatation measures. The classi-
fier used was a modified version of the the model described
above. It was trained on data from the non-mediated condition.
During the pilot experiments, models using moving windows
that were 5 seconds long with a step size of 1 second gave the
most promising results.

The classifier gets standardized input from the pupil dilation
data stream, and outputs a {T1,T2} classification every second.
Since at this preliminary stage, we are only detecting what
tasks the user is engaged in, we make the assumption that if
the user is multitasking, i.e {T1,T2} = {1,1}, then the user is
experiencing high load. If the user is only engaged in driving
it outputs {1,0}.

The experimental setup is similar to the one used in the pre-
vious study with some modifications to the design and tasks.
These changes are described in detail below.

Design
This study focused on audio notifications only. It was designed
as a repeated measures within subject study with only one
independent variable, i.e. non-mediated (control) vs. mediated
(test) conditions. To control for possible effects of order the
study was counterbalanced.

Participants
10 people (all male) participated in our study recruited through
a call sent out to students selected randomly from a graduate
school population.

Tasks
Since notifications are what the system needs to mediate, they
could not be used as the secondary task (T2) that the classifier
detects. We therefore increased task load in a different way
by using a manual transmission-based gear changing task as
the secondary task. The tasks were chosen so as to make it
difficult for a user to perform perfectly on the primary and
secondary tasks simultaneously.

Primary Task (T1): ConTRe

The primary task remains the same as in the first user study.
The participant is engaged in an abstracted driving task, where
they track a yellow cylinder with a steering wheel. The partici-
pant also has to simultaneously respond to red and green lights
on the yellow cylinder by depressing the brake and accelerator
pedals, respectively. The ConTRe task was set to alternate
between periods of low and high workloads as described in
the first study.

Secondary Task (T2): Gear Change

An LCD screen is placed in front of the simulator such that its
contents are easily visible below the yellow and blue cylinders
presented on the simulator screen. Numbers from 1–6 are
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presented on the LCD screen, which correspond to the gears
on the manual transmission gearbox which is included with
the Logitech G27 Racing Wheel. The user was asked to shift
to the right gear when the number changed on the screen. To
create a high task load for the user, the gear number only
changed when the ConTRe task was in its high load setting.
The gear number was set to change every 1–3 seconds.

Mediated Task: Notifications

The notification task is a simplified version of the one used in
the previous study. To create a continuous task scenario the
pause and recall portion of the previous study was eliminated.
In this study, notifications only consist of audio math and
sentence prompts that the user responds to with a true or false.

Apparatus and Sensors
The apparatus used to conduct, synchronize and record the
experiment was the same as before. Only audio notifications
were presented to the user. As pupil dilation was the lone
physiological measure of interest, the Pupil Pro headset was
the only physiological sensor worn by the user.

Methodology
Participants were guided through an informed consent process,
followed by an overview of the study. The participant was
then seated in the simulator, and was asked to put on the Pupil
Pro headset. They were instructed on how to perform the
ConTRe task. Once comfortable with the task, the secondary
gear changing task was introduced. After this the audio math
and sentence notifications were demonstrated to the user. Once
the user was familiar with all the tasks, a calibration step was
performed to determine the parameters needed to standardize
the data before classification. This step simply required the
user to perform the ConTRe task in its low workload setting
for 10 seconds. This was followed by two experimental trials.
These included the test condition in which notifications were
autonomously mediated based on task load, and the control
condition in which notifications were randomly presented to
the user regardless of task load.

Notifications were mediated by delaying them if they hadn’t
started playing. If they had started playing, and then the
system detected that the task load on the user was high, the
notification would cut off and repeat itself when the load on
the user had reduced. A trigger-happy system that cuts off a
notification every time a {1,1} is output by the classifier can be
annoying to the user. For better user experience, notifications
were mediated only when certain patterns of classification
outputs were observed. Based on pilot studies, the protocol
was set to delay or cut-off notifications anytime a pattern of
either [{1,1}, {1,1}] or [{1,1}, {1,0}, {1,1}] classifications
was output by the classifier. The system would then wait for a
series of five {1,0} classifications before resuming delivery of
notifications.

Measures
Quantitative performance data on primary, secondary, and
mediated tasks were collected. From the primary ConTRe
task, we collected the following: steering deviation, i.e. the
difference in distance between the reference cylinder and the

Performance Measures M N p

Primary Contre Task
Steering Deviation (%) 22.0 23.1 .47

Accel Reaction Time (ms) 980 1014 .67
Brake Reaction Time (ms) 1117 1157 .47

Accel Response Error Rate 0.34 0.23 .07
Brake Response Error Rate 0.25 0.32 .05

Secondary Gear Task
Attempts per stimulus 1.15 1.26 .015

Response Error Rate 0.22 0.31 .05

Mediated Notification Task
Math Reaction Time (s) 2.02 2.30 .19
Sent. Reaction Time (s) 2.30 2.53 .32

Math Response Error Rate 0.08 0.08 .82
Sent. Response Error Rate 0.22 0.27 .33

Table 5. Mean performance measures of the primary, secondary and
mediated tasks from both the mediated (M) and non-mediated (N) con-
ditions, along with paired t-test two-tailed p-values.

tracking cylinder (sampled at 570 Hz); reaction times to re-
spond to the red and green lights, i.e. the amount of time
from when the light went off to when the correct pedal was
depressed; and the error rate of depressing the wrong pedal.
These measures were automatically recorded by the simula-
tor. An average of 23.8 and 13.7 acceleration stimulus points
were presented to each user in the mediated and non-mediated
conditions, respectively. Similarly, an average of 21.3 and
11.2 brake stimulus points were presented in the mediated
and non-mediated conditions, respectively. Since notifications
were being delayed in the mediated condition, these trials
were longer that the non-mediated ones. For each user in each
condition, the mean steering deviation, reaction times, and
reaction errors were calculated.

From the secondary gear-changing task, the number of tries the
user took to get to the right gear, and the number of times they
didn’t succeed in reaching the right gear were determined. The
mean of these measures for each user in both conditions were
then calculated. Per user, an average of 52.2 and 28.3 gear
change requests were made in the mediated and non-mediated
conditions, respectively.

For performance on the mediated notification task, the re-
sponse times for the math and sentence prompts were com-
puted. This is the time from when the notification was pre-
sented to the driver to when they respond to indicate true
or false. The mean response times for notifications are then
recorded for each user in every condition. The errors in the
responses and the mean per user was also calculated for each
condition. An average of 7.5 math and sentence prompts each,
were presented to users in both conditions.

The outputs from the classifier, which occur every second,
were also recorded for the mediated condition. These will be
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System Stimulus Sensitivity Specificity Accuracy

every H and L 40 72 61
H 90 19 56

HH or HLH 83 42 63
HHH 74 68 71

HHHH 58 82 70
Table 6. Evaluation of different types of stimulus to which a system could
be designed to respond. The first two rows indicate the overly eager and
cautious behaviors, respectively. The next three rows represent different
patterns of classifier output.

analyzed to shed light on how the classifier’s outputs could
inform the system’s mediation behavior.

Results
Below we report on results from the experiment. We look at
mediation effects on each task by collectively analyzing their
corresponding performance measures. Since this presents
three sets of comparisons (one for each task), we use the Bon-
ferroni adjusted alpha levels of .017 per test (.05/3) to control
for Type I errors. To perform the analysis, we perform a mul-
tivariate ANOVA (MANOVA) on the performance measures
from each task. As opposed to running multiple univariate F
tests on each measure, MANOVA has the advantage of reduc-
ing the likelihood of a Type I error, and revealing differences
not discovered by ANOVA tests [33]. We also analyze the
classifier output with respect to task load, in order to shed light
on how a system might mediate notifications more effectively.

Mediation Effects

The analysis of mediation effect on the primary ConTRe task
using a repeated measures MANOVA showed no significant
effect, F(5,5)=1.44, p=.35. The means for each of the five
primary task measures in both conditions and the paired t-test
two-tailed p-values are listed in Table 5.

For the secondary gear-changing task, a repeated measures
MANOVA showed a significant effect, F(2,8)=7.42, p=.015.
Further analysis of each of the dependent variables showed
a significant difference in the mean number of tries the user
took to get to the right gear between the mediated (M=1.15,
SD=0.16) and non-mediated (M=1.26, SD=0.14) conditions,
t(9)=-3.72 , p=.004. There was also a slightly significant
difference in the failure rates between the mediated (M=0.22,
SD=0.05) and non-mediated (M=0.31, SD=0.13) conditions,
t(9)=-2.26 , p=.05. These are listed in Table 5.

A repeated measures MANOVA for the mediated notification
task revealed no significant effect, F(4,6)=0.98, p=.48. The
means for each of the four notification task measures in both
conditions and the paired t-test two-tailed p-values are also
listed in Table 5.

System Mediation Performance

Since the classifications are done on a sliding window, we
can expect a lag from the onset of high task load to when the
classifier output indicates so. Another reason for the delay in
classifications might be that even though a high load is being

imposed on the user, it might take a couple of seconds for
them to experience it as such. To find the average delay, the
cross-correlation between the alternating load conditions and
time-shifted classification outputs was determined for multiple
time shifts. Across users the average time-shift at which the
cross-correlations were maximum was 4.9 s with a standard
deviation of 1.44 s. For further analysis, this number was
rounded up, and the classification outputs were time-shifted
by 5 s for each user. For simplicity, we represent a {1,0}
classifier output as L and a a {1,1} classifier output as H. The
goal of this analysis is to get a sense of how well the classifier
was detecting high load situations across users in the study,
and how the system’s mediation behavior could potentially be
improved.

By being overly eager or overly cautious, a system can display
two extremes in how it uses the classifier outputs to inform
its mediation behavior. The eager system for example reacts
immediately to every change in task load L and H being output
by the classifier by playing or pausing a notification. We would
expect the system to have high specificity, as it immediately
changes its behavior based on classifier output. The cautious
system also stops notifications immediately when high task
load is sensed H, but continues to do so even if an H is followed
by Ls for a specified period of time. Thus it displays low
specificity. Under the cautious behavior, a single H occurring
during a high load section is considered as a true positive
(correct classification). Conversely, a single H during a low
load section is a false positive (incorrect classification). The
system’s sensitivity, specificity and accuracy are calculated by
aggregating the true and false positives over the trials from
all users. Results for the overly eager and cautious behaviors
are shown in Table 6, along with a few intermediate behaviors
which we describe next.

To trade-off between sensitivity and specificity, the system
could be designed to mediate notifications only if it sees a
particular pattern of classifier outputs. As described above,
if a pattern occurs during a high load section it is marked as
a true positive, and if it occurs during a low load section it
is marked as a false positive. A few example patterns were
evaluated, and their results are listed in Table 6. These in-
clude patterns such as [H,H] or [H,L,H] which reduces the
sensitivity of the system to the classifier outputs, making it
less cautious. This was also the pattern that was actually used
by the system in the autonomous mediation study. We can
reduce system sensitivity even further by having the system
mediate notifications only when it sees [H,H,H] from the clas-
sifier. Table 6 also lists evaluation results when [H,H,H,H]
is the pattern that the system responds to. In this way we get
a sense of how the system’s mediation behavior would have
changed if the protocol was set to respond to different patterns
of classifier outputs.

DISCUSSION
This paper presents a dataset of 13 psychophysiological signals
to estimate cognitive load. These signals include ECG, PPG,
ICG, Respiration, EDA, nose & cheek skin temperatures and
the differences between them, EMG, pupil dilation, eye gaze,
PTT and IHR (listed in Table 2). These were collected during
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a dual-task user study that subjected a participant to a series of
alternating low and high task loads. The study was designed
in this way to mimic the fluctuating loads people experience
while driving in the real world. The goal was to capture
these fluctuations as reflected in the participants physiological
responses.

The dual-task study consisted of a primary driving-like track-
ing and reaction task, and a secondary notification-based cog-
nitive task. ConTRe was used as the primary task as it focuses
on core driving skills and removes learnable contextual cues.
This improves data and repeatability of experiment. Similarly,
prompts frequently employed in complex span task exper-
iments serve as the notifications presented to a participant.
These represent the symbolic and verbal nature of notifica-
tions commonly received by people on their smartphones. In
the study, the timing and modality of the notifications were
treated as independent variables to understand their effects on
cognitive load.

The dual-task scenario can be cast as a multi-label learning
problem of the primary and secondary tasks. The approach
succeeded at building classification models that distinguish
whether the user is engaged in the primary task, the secondary
task, or both. The model worked for each user and across
all the participants. These models were built using statistical
features derived from measurements of pupil dilation, which
were fed to a random forest classifier. Our evaluations showed
that the timing of the notifications has a larger effect on the
load experienced by the user than the modality of notification
delivery.

We evaluated the impact of this model in a separate real-time
notification mediation study. The setup from the first study
was altered to include a manual gear changing task instead
of the notification itself. Pupil dilation data was streamed to
the classifier which output a multi-label classification every
second. In the test condition, the system would inhibit notifi-
cations if it believed that the user was simultaneously engaged
in two tasks. In the control condition, notifications were deliv-
ered randomly. The effects of mediation were determined by
analyzing the performance measures for each task. Mediation
allowed users to reach the right gear (their secondary task)
with less errors, and fewer number of attempts per gear change
request. Notice that the gear-shifting task uses different per-
ceptual and cognitive skills than the verbal notification task,
which is what the model was trained on. Our model transferred
and performed well on this mechanical performance stressing
activity.

The system’s mediation performance was evaluated using
cross-correlation measures between the user task loads and
time-shifted classifier outputs. We can interpret the results as
there being an average lag of 4.9 s between the onset of high
task load for the user, and when the system mediated notifica-
tions to them. System mediation behavior was also analyzed
based on how it responds to different patterns of outputs from
the classifier. The trade-off between the system’s sensitivity
and specificity was demonstrated for these different patterns.

Future work
There are a number of directions future work can take, and
we briefly discuss a few here. First, our data analysis did not
include moving windows over transitions from low to high
workloads and back. We are optimistic that temporal mod-
els could be used to detect these transitions, reducing the lag
in load detection. Second, improved measures of the load
experienced by the users (ground truth) can be obtained by
using a composite measure of the different task performance
metrics. Reaction times can serve as more reliable proxies
for cognitive load than externally imposed task load settings.
Third, with more data we can make fine-grained estimations
about user load within each task (for example, T1 = 0, 1, 2, 3,
etc., based on difficulty of the primary driving task). Fourth,
we should explore which physiological signals are more in-
dicative of stress, and which are better suited for estimating
cognitive load. Stress is likely to arise when failure at a task is
coupled with feelings of lack of control, in situations where
participants are evaluated by others [7]. We might hypothesize
that stress is an affect. It ebbs and flows at a slower pace than
cognitive load, which being reflective of the stages of mental
processing, fluctuates more rapidly.

To show that pupil dilation measures can be robust we used
an inexpensive off-the-shelf measuring technique. Prior work
reports use of expensive eye-trackers with higher sampling
rates for pupilometric measurements. Our study succeeded
with a consumer webcam (Microsoft LifeCam HD-6000) that
has a sampling rate of only 30 Hz. Even when tested outdoors
in a car during the day, with no special attempt to control
for ambient luminescence (apart from the initial calibration
step), the system showed promising results in estimating task
load through pupil dilation measures. More work could be
done to refine the setup and understand the trade-offs between
the fidelity of the equipment, environmental setup, and the
robustness of results.

CONCLUSION
We show that technology can know when its appropriate to en-
gage the user. This paper describes a system that can gauge the
cognitive load using psychophysiological signals. We created
a dataset of 13 physiological measures collected from partici-
pants in a multitasking study. They were asked to attend and
respond to notifications while performing a primary driving
task. We also collected performance measures on these tasks.
Of the five most promising physiological measures analyzed,
only pupil dilation reliably tracked task load in the near real-
time five second range. We demonstrated the effectiveness
of using pupil dilation measures for mediating task load in a
second multitasking user study. Autonomous mediation of no-
tifications significantly improved participant task performance.
Cognitive load assessment is a rich area for exploration, and
we hope to inspire other researchers to use our data set to
further evaluate models of dynamic task load estimation. By
enabling computers to interact appropriately and considerately,
we can pave the way for future proactive computing scenarios.
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